

RWE Renewables Australia has submitted a Development Application (DA) to Cassowary Coast Regional Council (CCRC) for a proposed Battery Energy Storage System (BESS) near Tully. The proposed project is in the early stages of project development, with initial planning and environmental studies now complete and ongoing stakeholder and community engagement underway.

A BESS stores energy during periods of low demand and dispatches the energy during periods of peak demand and emergency events. The proposed Tully BESS is strategically located next to Powerlink Queensland's existing Tully Substation, which is a key node supplying power to North and Far North Queensland. The proposed Tully BESS would be a key piece of infrastructure in supporting energy storage development in regional Australia and would help make supply more secure for households and businesses, with less risk of faults and outages.

Over the past year we have proactively engaged with host landholders, CCRC, Traditional Owners and project neighbours to seek their views and input. We also attended the Tully Show 25-26 July 2025 to introduce the project to the wider community and seek their views. Feedback to date has been constructive and encouraging.

At RWE, we understand the importance of working collaboratively with local communities and will continue to take a proactive and respectful approach to stakeholder engagement. I have a personal connection to the area, having grown up on my parents' banana and sugarcane farm in Tully, and am especially committed to ensuring this project reflects local interests and priorities, and delivers long-term economic and employment benefits for the Tully community and the broader Far North Queensland region.

If you have any queries, please don't hesitate to reach out via our toll free number or email.

Best regards,

Bal Saini

Project Manager - Tully BESS

At a glance

Located about 140km south of Cairns, near the township of Tully in the Cassowary Coast Regional Council

Planned capacity of **200 megawatts** and **800 megawatt hours**

About 188 battery units

Power about 15,000 homes for 4 hours

Development footprint is about 9 hectares

In planning and approvals –

Development Application submitted to Cassowary Coast Regional Council

Construction scheduled for 2027 with up to 18-month construction period and operations expected in 2028

60 full-time jobs during construction and up to 3 **ongoing jobs** during operations

RWE Renewables Australia respectfully acknowledges the Gulngay people, the Traditional Owners of the lands where the Tully BESS is proposed, and pay our respect to their Elders, past, present and emerging.

An update on the Project's status

studies have now been completed. **Mount Tyson** Tully **Jarra Creek Mount Mackay** National Park 20 **Tully Substation** Cairns Innisfail Queensland Mission Beach Tully BESS Proposed BESS Site **Powerlink Transmission Line** For Informational Purposes Only

RWE has submitted the development application for the proposed Tully BESS to the CCRC. In parallel, we are progressing our grid connection application with Powerlink Queensland.

Developing a BESS involves detailed studies and risk assessments, in accordance with state-specific planning frameworks. Technical studies have now been completed. These include:

- Ecology & biodiversity
- Water/drainage management
- Cultural heritage
- Traffic & noise impact
- Agricultural Land Assessment

Hazard Assessment

• Visual & landscape assessment • Erosion & Sediment Control

Construction is expected to begin once all necessary planning and environmental approvals have been secured. It typically takes place in stages, approximately 18 months, depending on weather, site conditions and transmission connections.

Construction activities:

1 Site preparation

- Clearing and grading the site (with environmental controls in place)
- Installing temporary amenities, fencing, and signage
- Access roads

2 Civil works

- Laying concrete pads or foundations for battery enclosures and equipment
- Building stormwater drainage and erosion control systems

3 Delivery of equipment

- Battery containers, inverters, transformers, and switchgear delivered by trucks
- Traffic management plans will be in place for safety and reduced disruption

4 Electrical installation

- Connecting inverters, cabling, control systems and transformers
- Installing grid connection infrastructure to nearby substation

5 Testing and commissioning

• Safety and performance testing of all systems

Operations activites

The BESS will be monitored remotely 24/7 through the Battery Management System. A small local team will conduct scheduled maintenance including:

- Visual inspections of battery enclosures, transformers, and cabling
- Servicing of fire safety systems
- Software updates and remote diagnostics
- Vegetation management and upkeep of access roads and fencing

Decommissioning activities

Decommissioning will involve safe dismantling and removal of all equipment after the system reaches the end of its operational life (typically about 20 years).

Key components

Battery Management System (BMS)

Manages charging and discharging and ensures safe operation.

Cooling and air conditioning systems

Maintain stable operating temperatures.

Communication & power management systems

Enable remote monitoring and control.

~500 metre transmission line

Transports electricity to charge the battery and dispatch to Powerlink substation for delivery to consumers.

Where can I find out more about BESS?

To find out more and view a video on battery energy storage systems, visit the RWE website:

rwe.com/en/our-energy/discover-renewables/battery-storage

~188 battery units

Store the electricity.

Transformers

Adjusts the AC voltage to appropriate grid levels.

Inverters

Converts alternating current (AC) to direct current (DC) for storage and DC back to AC to feed into the grid.

Fire management

Technical studies conducted to date have found the risk of fire is low. Even so the Tully BESS is being designed with multiple layers of safety to ensure the highest level of protection for workers, neighbours, and the local community.

SITE DESIGN

- BESS units housed in fire-resistant containers
- BESS units are spaced apart to prevent fire spreading.
- Each container is fitted with venting systems to safely release pressure.
- The site includes buffer zones, fencing, and clear access for emergency services.
- Onsite 40,000-litre water tank

PREVENTION:

- Thermal management systems (cooling) keep batteries within safe operating temperatures
- The BMS continuously monitors the system and will automatically isolate battery modules or racks if unsafe conditions are detected
- Automatic shutdown systems isolate faulty cells or units quickly

CONSULTATION

Consultation has commenced with the Tully Queensland Fire and Emergency Services (QFES). A detailed Fire Management and Emergency Response Plan will be developed in consultation with QFES.

A BESS fire is managed quite differently from a typical building or bushfire because of the way lithium-ion batteries behave – the safest approach is to let the battery burn out in a controlled way inside its container while keeping it contained and cooled.

Key priorities during the unlikely event of a BESS fire:

- Preventing spread (isolation, suppression, containment).
- Protecting responders (HazMat PPE, controlled cooling).
- Protecting the environment (bunding, runoff capture, licensed disposal).
- Protecting the community (safe exclusion zones, air monitoring, clear communication)

Noise management

The BESS will be quieter than most farm machinery or passing traffic. Noise levels will be monitored to ensure compliance with Queensland regulations.

An independent acoustic assessment has evaluated the potential noise impacts associated with the project as part of our development application. The modelling was prepared by qualified acoustic consultants in accordance with the relevant regulations and Australian Standards. The assessment considers construction and operational phases, including worst-case scenarios, such as peak cooling demand, and compares predicted sound levels against applicable criteria at the nearest neighbors.

CHARACTERISTICS

- Normal operation: A low, steady sound mainly from fans and inverters that manage the power. It is similar to a household outdoor air-conditioner, around 37dB 600 meters from the BESS.
- Short-term variations: During high demand (when fans work harder), sound may be slightly noticeable, but still within regulated limits.

MANAGEMENT

- Design standards ensure the BESS complies with the relevant regulations.
- Setback distances ensure there is enough distance between equipment and nearby homes.
- Independent acoustic experts assess predicted noise levels before construction.
- If needed, structures such as fencing, landscaping or acoustic enclosures can be added

Decibals (dB)

Have your say

We invite the community to participate in shaping the project through:

Community drop-in sessions

Online and written feedback survevs

Formal public comment periods during the Development Application (DA) process

Ongoing updates via newsletters and our project website

We will continue to be proactive and guided by our values of honesty, respect, adaptability, consistency, and consideration. We are committed to maintaining open and transparent communication, ensuring stakeholders and the community are informed and can contribute their views. We aim to build strong, enduring relationships and deliver a project that aligns with community expectations and supports positive regional outcomes.

Community **Benefits**

The economic and community benefits of the proposed Tully BESS include:

- Boosts to local and regional businesses, including construction contractors, transport and logistics providers, hospitality/accommodation services, local trades and services
- Establishment of a community benefit fund
- Creation of up to 60 jobs during construction, and up to **3 ongoing roles** during operations
- Improved energy reliability, particularly during extreme weather or peak demand periods

We are developing a community sponsorship program to support local social and community wellbeing. The program will focus on providing funding and support for local schools, sporting clubs, cultural initiatives, and community events that strengthen connections and deliver positive outcomes for residents. Through this initiative, we aim to ensure the project contributes to the long-term wellbeing of the community and leaves a meaningful legacy beyond its role in the energy network.

Join our mailing list

To subscribe to project updates and stay up to date, scan the QR code or contact the team

Find out more

1800 311 915

tullybess@rwe.com

Tully

