

Marshall Day Acoustics (Australia) Pty Ltd
ABN: 42 687 698 184
31 Vardon Avenue
Adelaide SA 5000
T: +618 6189 1400
www.marshallday.com

Project: TULLY BESS

Prepared for: Attexo

T.C. Beirne Building, Level 4

315 Brunswick Street Fortitude Valley 4006

Attention: Sue Walker

Report No.: Rp 001 20241144

Disclaimer

Reports produced by Marshall Day Acoustics (Australia) Pty Ltd are based on a specific scope, conditions and limitations, as agreed between Marshall Day Acoustics and the Client. Information and/or report(s) prepared by Marshall Day Acoustics may not be suitable for uses other than the specific project. No parties other than the Client should use any information and/or report(s) without first conferring with Marshall Day Acoustics.

The advice given herein is for acoustic purposes only. Relevant authorities and experts should be consulted with regard to compliance with regulations or requirements governing areas other than acoustics.

Copyright

The concepts and information contained in this document are the property of Marshall Day Acoustics (Australia) Pty Ltd. Use or copying of this document in whole or in part without the written permission of Marshall Day Acoustics constitutes an infringement of copyright. Information shall not be assigned to a third party without prior consent.

Document Control

Status:	Rev:	Comments	Date:	Author:	Reviewer:
Complete	-	For client information	23 Sep 2025	J Gil	A Stoker

EXECUTIVE SUMMARY

Marshall Day Acoustics (Australia) Pty Ltd (MDA) has been engaged to prepare an operational noise assessment for the proposed Tully BESS (Project). The Project is proposed to be located on two freehold parcels (Lot 1 on RP735276 and Lot 1 on RP852238) in Tully, Queensland, within the Cassowary Coast Regional Council (CCRC) local government area.

The project is proposed to be developed by RWE Renewables Australia (Proponent). MDA have been commissioned to undertake an assessment of operational noise associated with the Project, to support the development application to be submitted to CCRC.

Inputs for this assessment have been provided by the Proponent, as far as they are available at this stage of the development process. Any and all assumptions and developed data have been reviewed by the Proponent and approved as being representative for the Project.

The noise assessment considers the primary noise generating equipment associated with the Project, being the battery/inverter containers and transformers, and reflects a preliminary Project design provided by the Proponent.

Assessment of operational noise from the Project has been conducted in accordance with the requirements of the CCRC Planning Scheme, in particular Performance Outcome (PO) 5 and Acceptable Outcome (AO) 5.1.¹ This requires operational noise from the Project to be below the acoustic quality objectives set out by Queensland Government's *Environmental Protection (Noise) Policy 2019* (EPP 2019).²

Based on the nominated Project design and equipment selections, and generally conservative noise assessment assumptions, operational noise from the Project is predicted to be below the acoustic quality objectives at all sensitive receptors, by a minimum margin of 5 dB. This meets the requirements of PO5 and AO5.1 of the CCRC Planning Scheme.

The broader requirements of the EPP 2019 have also been considered, including background creep, deterioration of the existing acoustic environment and cumulative noise.

No adverse impact is indicated with respect to background creep or deterioration of the existing acoustic environment. Absolute predicted noise levels from the project are generally low, mitigation measures have been adopted into the candidate project design, and the management intent and management hierarchy of the EPP 2019 have been followed.

With respect to cumulative noise, the total noise from the Project and other industrial noise sources must be considered. The primary noise sources for consideration are the existing Tully substations and their component transformers.

Detailed information with respect to existing noise levels from these sources is not known. MDA has therefore estimated potential existing noise levels from the substations based on consideration of the rated capacities of the substation transformers (in MVA) and guidance provided by the Australian technical standard AS 60076:10.³ The standard provides a method for deriving noise levels for power transformers resulting in either a 'standard maximum' noise level or 'reduced maximum' noise level.

Predicted cumulative noise levels considering the Project and existing substations have the potential to be greater than the EPP 2019 acoustic quality objectives at the nearest receptors, where the 'standard maximum' transformer noise levels are considered.

¹ Cassowary Coast Regional Council planning scheme 2015 (v.4), 3 July 2015

² Environmental Protection (Noise) Policy 2019 Subordinate Legislation 2019 No. 154 made under the Environmental Protection Act 1994

³ AS 60076.10:2023 Power transformers, Part 10: Determination of sound levels (IEC 60076-10:2016 (ED. 2.0) MOD)

Conversely, predicted cumulative noise levels are indicated to be below EPP 2019 acoustic quality objectives at the nearest receptors, where the 'reduced maximum' transformer noise levels are considered.

It should be noted that the 'standard maximum' in AS 60076:10 is typically conservative and it is MDA's experience that noise levels associated with properly designed and manufactured transformers tend towards the 'reduced maximum' sound power level, rather than the 'standard maximum'.

Notwithstanding the above the results indicate that cumulative noise will be a key factor during subsequent development stages. It will be critical to have a detailed understanding of existing noise levels from the Tully substations to inform the ongoing design development of the Project.

It is therefore recommended that existing substation noise is measured and assessed post approval. This would involve travelling to site to conduct attended measurements in publicly accessible locations to determine noise contributions at receivers for the existing substation infrastructure. This may comprise measurements at the boundary of the subject facility, intermediate locations and/or receiver locations. No access to private property would be required. Attended measurements would be conducted for each assessment period (day/evening and night). The cumulative noise assessment should be reevaluated at that time.

The assessment herein has considered the effect of acoustic barriers and included noise mitigation measures for Project transformers, by way of OEM performance requirements. Additional or alternative noise mitigation will be considered during subsequent detailed design stages once noise levels from the Tully substations are known, additional OEM information is available and detailed performance of the facility is known e.g. charge and discharge rates. The primary noise mitigation solution for any BESS Project is robust and holistic detailed design with a focus on noise minimisation.

The assessment in this report details one way by which the Project could be designed and delivered whilst maintaining compliance with PO5 and AO5.1 of the CCRC Planning Scheme. The assessment also evaluates risk with respect to compliance with the EPP 2019. It has been determined that there is sufficient detailed design and engineering noise control opportunities available as the Project progresses that compliance with the broader requirements of the EPP 2019 is feasible.

Variations from the Project layout and nominated equipment selections would not necessarily result in non-compliance but have not been reviewed or verified in this assessment.

Where changes from any aspect of the assessment detailed in this report occur, e.g. during design development, tender or procurement, the changes should be reviewed to verify continued compliance of the Project.

To assist the ongoing development of the Project the following recommendations are provided:

- Design development (including layout, equipment selections and noise mitigation measures) to align with the requirements of the EPP 2019 as the Project progresses.
- Additional post-approval noise survey works to be carried out, including detailed evaluation of noise levels from current infrastructure (Tully Substations).
- Where Project changes occur, acoustic compliance to be verified via updated noise modelling and reporting this may comprise a final, 'for construction' noise model and report.
- Preparation of an operational noise management plan and detailed compliance test plan.

TABLE OF CONTENTS

1.0	INTRODUCTION	6
2.0	PROJECT OVERVIEW	7
2.1	Description	7
2.2	Sensitive receptors	7
3.0	OPERATIONAL NOISE POLICY & GUIDELINES	10
3.1	Cassowary Coast Planning Scheme 2015	10
3.2	Environmental Protection (Noise) Policy 2019	12
3.2.1	Cumulative noise	12
3.2.2	Background creep and existing acoustic environment	12
4.0	EXISTING NOISE ENVIRONMENT	13
5.0	NOISE PREDICTION METHOD	14
6.0	OPERATIONAL NOISE ASSESSMENT	15
6.1	Noise sources	15
6.2	Noise mitigation measures	16
6.3	Predicted noise levels	17
7.0	DISCUSSION	20
7.1	Cassowary Coast Planning Scheme 2015	20
7.2	Environmental Protection (Noise) Policy 2019	20
7.2.1	Cumulative noise	20
7.2.2	Background creep and deterioration of the existing acoustic environment	22
7.3	Summary	23

APPENDIX A GLOSSARY OF TERMINOLOGY

APPENDIX B SENSITIVE RECEPTORS

APPENDIX C ENVIRONMENTAL PROTECTION (NOISE) POLICY 2019 SUMMARY

APPENDIX D REPEALED EPP 2008 BACKGROUND CREEP CRITERIA

APPENDIX E NOISE MODELLING

APPENDIX F NOISE CONTOURS

APPENDIX G TULLY SUBSTATIONS

1.0 INTRODUCTION

Attexo are assisting RWE Renewables Australia (Proponent) with the development application for a proposed battery energy storage system (BESS), identified as Tully BESS (Project).

The Project is located across a 27-ha site consisting of two freehold parcels, Lot 1 on RP735276 and Lot 1 on RP852238, in Tully, Queensland. It is proposed to comprise 200 MW/4 hr configuration BESS and associated infrastructure.

MDA have been commissioned by Attexo to undertake an assessment of operational noise associated with the Project. The assessment is intended to supplement a development application to be submitted to CCRC.

The Proponent has provided a preliminary Project design comprising a defined layout of battery/inverter units, medium voltage (MV) transformers, and high voltage (HV) transformer. Predicted operational noise levels at relevant sensitive receptors have been determined based on a noise model adopting the Proponent's Project design and preliminary OEM nominations.

This report contains the details of the proposed Project infrastructure and associated noise data, and evaluation of predicted noise levels at sensitive receptors against Performance Outcome (PO) 5 and Acceptable Outcome (AO) 5.1 of the CCRC Planning Scheme, as well as broader requirements of the EPP 2019.⁴

A glossary of relevant acoustic terminology used within this report has been included in Appendix A.

⁴ Environmental Protection (Noise) Policy 2019 Subordinate Legislation 2019 No. 154 made under the Environmental Protection Act 1994;

Cassowary Coast Regional Council planning scheme 2015 (v.4), 3 July 2015

2.0 PROJECT OVERVIEW

2.1 Description

The Proponent has advised the following equipment counts in the proposed preliminary 200 MW/4 hr configuration layout:

- 188 battery/inverter units
- 47 MV inverters
- one HV transformer.

The Project site and surrounds is depicted in Figure 1.

An outline plan of the Project layout with indicative noise source locations is provided in Figure 2.

2.2 Sensitive receptors

The EPP 2019 defines a sensitive receptor as being 'an area or place where noise is measured'.

For the purpose of noise assessment under the EPP 2019, sensitive receptors are typically dwellings, educational establishments, hospitals, parks, and other places or spaces at which environmental values are expected to be enhanced or protected.

Attexo have provided a comprehensive list of 490 receptors within 3 km of the Project boundary. The list was filtered to exclude non-sensitive receptors such as industrial buildings or sheds. For the purpose of this assessment, 343 sensitive receptors were considered, as shown in Figure 1. Coordinates of the sensitive receptors are shown in Appendix B.

Figure 1: Project site and surrounds

Figure 2: Project layout and indicative noise source locations

3.0 OPERATIONAL NOISE POLICY & GUIDELINES

The *Environmental Protection Act 1994* (EP Act) forms part of a legislative framework that regulates noise from domestic, commercial and industrial premises. Local councils are generally responsible for responding to issues relating to noise that is regulated under the EP Act and have the ability to make local laws to manage specific noise issues in their local area.

This assessment primarily considers the CCRC Planning Scheme, which regulates land use and development across the region and delivers Council's local planning aspirations for the region. It represents the consistent planning regime established by CCRC and the basis by which the Project would by assessed by Council.

In addition to the CCRC Planning Scheme, the EPP 2019 has been considered, being the subordinate legislation under the EP Act by which noise in Queensland is regulated.

3.1 Cassowary Coast Planning Scheme 2015

The CCRC Planning Scheme sets out requirements and assessment benchmarks for developments in a given zone code. Review of the CCRC zoning map indicates that the Project is located in a Rural Zone.⁵

Part 6 of the CCRC Planning Scheme, specifically Table 6.2.4.3, provides assessment provisions for properties in a Rural Zone. PO5 and associated AO5.1 refer to a development's impact on human health, wellbeing, human safety or amenity on sensitive land uses and include requirements related to noise. These are reproduced in Table 1.

Table 1: Excerpt from CCRC Planning Scheme Table 6.2.4.3

Performance outcome	Acceptable outcome		
PO5	AO5.1		
Development must not result in a sensitive land use	The use is designed to ensure that:		
being exposed to industrial air, noise and odour emissions that impact on human health, wellbeing and amenity.	 the indoor noise objectives set out in the Environmental Protection (Noise) Policy 2008 are met; 		
	 the air quality objectives in the Environmental Protection (Air) Policy 2008 are met. 		

AO5.1 requires that noise from development in a Rural Zone be below the indoor acoustic quality objectives set out by the EPP. It does not give relevance to other requirements set out by the EPP.

The CCRC Planning Scheme predates the latest version of the EPP 2019, and therefore AO5.1 refers to the 2008 version of the EPP. The EPP 2008 was repealed on 1 September 2019 when the EPP 2019 commenced. The EPP 2019 is the current policy and is therefore taken to apply under AO5.1.

The indoor acoustic quality objectives set out by the EPP 2019 are reproduced in Table 2. Only sensitive receptor types relevant for the local area are included.

⁵ Online Planning Scheme Mapping | Cassowary Coast Regional Council

Table 2: Indoor acoustic quality objectives, dB LAeq,adj,1hr

Sensitive receptor	Acoustic quality objective ^a			
	Day and evening	Night		
Residence	35	30		
Library and educational institution	35	-		
Commercial and retail activity	45	-		

a Day/evening is 0700–2200 hrs, Night is 2200–0700 hrs.

It is standard practice to predict noise levels external to a sensitive receptor and then establish and equivalent internal noise level based on an outdoor to indoor attenuation factor. This approach can also be reversed to established external noise criteria aligning with internal noise criteria.

Guidance on appropriate outdoor to indoor attenuation factors is provided in the Noise and Vibration EIS Information Guideline which states:⁶

When assessing outdoor to indoor noise attenuation at sensitive receptors, do not use the World Health Organisation guideline's value of 25dB as it was developed for European buildings with double-glazed windows. Instead, use an outdoor to indoor attenuation value of 7dB, which is appropriate for typical Queensland buildings with open windows.

This results in the equivalent outdoor acoustic quality objectives set out in Table 3.

Table 3: Equivalent outdoor acoustic quality objectives, dB LAeq,adj,1hr

Sensitive receptor	Acoustic quality objective ^a			
	Day and evening	Night		
Residence	42	37		
Library and educational institution	42	-		
Commercial and retail activity	52	-		

a Day/evening is 0700–2200 hrs, Night is 2200–0700 hrs.

Predicted noise levels below the equivalent outdoor acoustic quality objectives will mean compliance with AO5.1.

Based on the wording of PO5 and AO5.1 is interpreted that the acoustic quality objectives apply to the Project only i.e. without consideration of cumulative noise.

⁶ Noise and Vibration EIS Information Guideline, Queensland Government, dated 2022.

3.2 Environmental Protection (Noise) Policy 2019

PO5 and AO5.1 of the CCRC Planning Scheme refer in general terms to limited part of the EPP 2019, requiring noise from the Project in isolation to be below the acoustic quality objectives.

The broader EPP 2019 contains other assessment requirements that legislatively apply to the project, including consideration of background creep, deterioration of the existing acoustic environment and cumulative noise.

The following sections provide discussions of the application of the EPP 2019 to the Project. Summary information with respect to the EPP 2019 is provided in Appendix C.

3.2.1 Cumulative noise

Under the EPP 2019 the acoustic quality objective for a sensitive receptor, means 'the maximum level of noise that should be experienced in the acoustic environment of the sensitive receptor'. It is therefore considered a total noise amenity criterion for a sensitive receptor, considering the total noise from all sources.⁷

On this basis assessment of noise from the Project under the full EPP 2019 would require total noise from the project and other existing noise sources (primarily the existing Tully substations) to be below the Equivalent outdoor acoustic quality objectives set out in Table 3.

3.2.2 Background creep and existing acoustic environment

The EPP 2019 also requires background creep to be assessed and provides guidance to do so, referencing a qualitative management hierarchy and management intent (refer Appendix C2).

The Explanatory Notes provide the following additional guidance:8

The acoustic quality objectives are not individual point source emission standards but are total levels of noise in the surrounding environment. It is not intended that, as part of achieving the acoustic quality objectives, any part of the existing acoustic environment be allowed to deteriorate. That means in using this policy for making decisions including under the Environmental Protection Act 1994, the acoustic quality objectives should not be seen as a noise limit without consideration of whether the acoustic environment is being allowed to deteriorate due to an existing acoustic environment that is better than the acoustic quality objective.

These requirements are distinct from the subject of background creep. Specifically, deterioration of the existing acoustic environment relates to changes in the total sound of an environment, as measured by the equivalent noise level, L_{Aeq} . This aligns with the acoustic descriptor indicated in the acoustic quality objectives. In contrast, background noise creep relates to changes to the underlying sound level of an area (i.e. the quiet periods during lulls in the total ambient sound), as measured by the L_{A90} .

Background creep and the existing acoustic environment must therefore be considered in the context of the EPP 2019 and associated management framework. The framework is used to qualitatively evaluate the potential for background creep.

Excluding noise sources described in Schedule 1, Part 1, Section 1 of the EP Act. For the Project excluded noise sources would be public roads or State-controlled roads.

Environmental Protection (Noise) Policy 2019 Explanatory notes for SL 2019 No. 154 (Explanatory Notes), Queensland Government

4.0 EXISTING NOISE ENVIRONMENT

The nearest sensitive receptors are likely to experience noise from the existing Tully substations, and from Bruce Highway, located approximately 3 km to the east. Locations further away from the Project, within the town of Tully, are expected to experience local traffic noise, as well as commercial and industrial noise.

Receptors located to the south and north-west of the Project are located within a rural environment. Existing background and ambient noise levels may be comparatively low.

Based on information provided by Attexo it is understood that the subject of background noise was discussed between Attexo and CCRC during pre-lodgement consultation. CCRC advised Attexo that background noise measurement was not necessary for the Project.

Notwithstanding the above, we recommend that an appropriate noise survey is carried out to evaluate existing noise from the substations. This could be carried out post-approval to inform detailed design development for the project, based on cumulative noise factors.

5.0 NOISE PREDICTION METHOD

Operational noise levels from the Project are predicted using:

- noise emission data for the relevant equipment. This has been obtained directly from equipment manufacturers for the candidate equipment. The data is subject to confidentiality agreements.
- a 3D digital model of the site and the surrounding environment.
- a digital noise model of the Project and the surrounding environment using proprietary noise modelling software SoundPLANnoise (version 9.1)
- implementation of the environmental sound propagation method specified in ISO 9613-2.9

The implementation of ISO 9613-2 within proprietary noise modelling software enables multiple sound transmission paths, including reflected and screened paths, to be accounted for in the calculated noise levels. ISO 9613-2 was designed to assume conditions that favour the propagation of noise from meteorological effects, described as a slight wind (1 to 5 m/s) blowing from source to receiver, or a well-developed moderate ground-based temperature inversion.

Attexo have provided a terrain dataset with 1 m grid size encompassing the Project site and surrounds. Publicly available 5 m grid size terrain data was used to extend the dataset provided by the Proponent to establish a terrain model encompassing all sensitive receptors and intervening noise propagation paths. The interface between both datasets was inspected for anomalies in terrain and none were found.

All equipment was modelled as omni-directional point sources at heights equivalent to the top of the equipment.

Additional information with respect to noise modelling is provided in Appendix E.

⁹ International Standard ISO 9613-2: 2024 Acoustics – Attenuation of sound during propagation outdoors – Part 2: Engineering method for the prediction of sound pressure levels outdoors (ISO-9613-2)

Sourced from Spatial Services via Elvis – Elevation and Depth – Foundation Spatial Data https://elevation.fsdf.org.au/

6.0 OPERATIONAL NOISE ASSESSMENT

At this stage, prior to planning approval, tender and procurement, it is not feasible to definitively determine equipment that will be installed at construction. This limitation is not unique to this Project and is typical of any large-scale utility or infrastructure project.

Significant care has been taken to ensure that the adopted Project design and equipment selections are representative of what is capable of being accommodated into the Project at later stages. This has been confirmed by the Proponent.

Separate noise models have been created for day/evening and night periods on the basis that the Project will operate at lower cooling capacity during the night. This is in line with typical operations of a grid-scale BESS based at lower ambient temperatures.

During detailed design, the candidate equipment and associated assumptions must be reviewed, and the noise modelling and associated reporting should be updated where changes occur.

6.1 Noise sources

The Proponent has prepared a detailed plan of the Project which has been used as the basis of this assessment (refer Figure 2). Noise generating equipment has been indicated to comprise:

- Battery/inverter units
- MV transformers
- HV transformer

Noise data for the candidate equipment has been reviewed, with representative information adopted for the purposes of noise modelling. Since the details of manufacturer noise test documentation are confidential, only the octave band spectral information and the tested operational setpoint are reported herein.

Sound power levels for each item, as used in the noise model, are detailed in Table 4. The noise data is provided as un-weighted (linear) octave band spectra and A-weighted overall sound power level. Equipment counts and noise source heights are provided in Table 5.

Table 4: Sound power levels for Project equipment items (per unit), dB Lw

Item	Octave band centre frequency, Hz							
	63	125	250	500	1,000	2,000	4,000	dBA
Battery/inverter unit								
Day/evening operation	_a 	80	91	82	79	77	73	86
Night operation	_a 	81	81	76	73	71	65	79
MV transformer (all time)	70	72	67	67	61	56	51	67
HV transformer (all time)	97	99	94	94	88	83	78	94

a OEM data not available in 63 Hz frequency range

Table 5: Equipment counts and noise source height

Item	Quantity	Noise source height, m
Battery/inverter unit	188	3.3
MV transformer	47	2.4
HV transformer	1	5

Additional information with respect to the source of the noise data is provided in Table 6. All noise sources have been modelled as individual, omni-directional sources.

Table 6: Noise data descriptions (per unit)

Item	Description
Battery/inverter unit	Manufacturer third octave band sound power levels for 4MWh combined battery/inverter unit. ISO 3744:2010 is referenced in the test report provided by the Proponent. ¹¹
	For the day/evening period, data associated with 50% cooling fan duty has been adopted.
	For the night period, data associated with 30% cooling fan duty has been adopted.
	The fan duty information was provided by the Proponent and confirmed by the manufacturer as being appropriate for the expected ambient temperatures for the Project.
	The manufacturer datasheet indicates a 1.2 dB uncertainty factor which has been included in noise modelling.
MV & HV transformers	The 'reduced maximum' sound power levels for the 4.2 MVA MV transformer and the 360 MVA HV transformers were derived in accordance with AS 60076:10.12
	Spectral data for both transformers was estimated by applying Bies & Hansen corrections from Table 11.27, (Location 1a for outdoor transformer noise) to the derived overall sound power levels. 13

6.2 Noise mitigation measures

Noise mitigation should be considered by the proponent for multiple purposes including:

- Controlling noise levels such that the acoustic quality objectives can be achieved
- Reducing noise levels to manage background creep
- Minimising noise as a best practice

The full extent of noise mitigation that might be required for the Project cannot be determined at this early stage. Mitigation and noise control design will be specific to the 'for construction' Project design that will be determined following detailed design, tender and procurement, post-approval.

On this basis limited mitigation has been considered herein, primarily aimed at managing noise levels to meet acoustic quality objectives and reflect obligations under the management framework with respect to background creep.

The following noise mitigation measures have been included in the noise modelling:

- Provision of a 6 m tall noise barrier located directly to the north of the batteries, as indicated in Figure 2.
- Adoption of 'reduced maximum' noise levels for MV and HV transformers.

The mitigation measures detailed above represent a single way in which required mitigation could be achieved.

¹¹ ISO 3744:2010 Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Engineering methods for an essentially free field over a reflecting plane

¹² AS 60076.10:2023 Power transformers, Part 10: Determination of sound levels (IEC 60076-10:2016 (ED. 2.0) MOD)

Bies, & Hansen, C. H. (2009). Engineering noise control: theory and practice (Fourth edition.). p. 601

It will be necessary to investigate additional and/or alternative noise mitigation and noise control measures as the Project design progresses. The most effective mitigation measure for BESS projects is quality, holistic project design with a focus on minimising noise. This extends to:

- Preferencing quieter equipment, where feasible
- Considering directivity of equipment and rotating preferentially to minimise noise spill
- Improving noise models to reflect real worl operational conditions
- Providing manageable acoustic performance targets for transformer manufacturers
- Detailed design development of acoustic barriers (where required)
- Careful consideration of tonality

6.3 Predicted noise levels

Predicted operational noise levels at the sensitive receptors have been calculated based on the preliminary Project design detailed in Section 2.0, the method detailed in Section 5.0, the operational noise source information detailed in Section 6.1, and noise mitigation detailed in Section 6.2.

The predicted noise levels are expressed as $L_{Aeq,adj,1\,hr}$ and must include any applicable adjustment for impulsive or tonal characteristics.

The equipment is not likely to include any impulsive characteristics.

The Noise Measurement Manual states adjustments must to be made to tonal noise: 14

If tonal components are clearly audible and they can be detected by a one third octave analysis the adjustment may be 5dB. If the components are only just detectable by the observer and demonstrated by narrow band analysis, an adjustment of 2-3dB may be appropriate.

The Noise Measurement Manual gives an objective tonality test. This method involves assessing the one-third octave band spectrum at sensitive receptors.

Battery units, inverters and transformers associated with BESS infrastructure commonly exhibit tonal characteristics at source. Crucially, the requirement or otherwise for the application of a tonality adjustment applies at the noise-affected premises only. There is no current, standardised method for carrying out tonality predictions, and any developed method for evaluating tonality pre-construction should be considered a general risk assessment only, and not an engineering method.

Notwithstanding this, preliminary noise modelling using 1/3 octave band manufacturer sound power data indicated a risk for tonality at most noise-affected premises. Predictions indicated an applicable tonality adjustment range between 2 and 3 for receptors within 1000 m from Project boundary. For simplicity and robustness, MDA has assumed tonality to be present at all noise-affected premises and applied a +3 dB adjustment to the predicted noise levels. This is a conservative approach that can be refined during detailed design.

The predicted noise levels are shown in Table 7 and Table 8 for the day/evening and night periods, respectively, at the 25 most affected receptors. Predicted noise contours are shown in Appendix F.

¹⁴ Noise Measurement Manual, Queensland Government, dated 2020.

Table 7: Predicted operational noise levels for the day/evening period (50% battery/inverter fan speed), dB $L_{Aeq,adj,1hr}$

Sensitive receptor		Equivalent external acoustic quality objective
4-Res-	32	42
6-Res-	34	42
10-Res-	34	42
13-Res-	33	42
24-Res-	34	42
27-Res-	33	42
28-Res-	34	42
31-Res-	35	42
34-Res-	34	42
36-Res-	33	42
38-Res-	34	42
42-Res-	34	42
54-Res-	35	42
55-Res-	34	42
58-Res-	34	42
59-Res-	33	42
60-Res-	33	42
63-Res-	33	42
65-Res-	34	42
72-Res-	33	42
74-Res-	35	42
81-Res-	33	42
87-Res-	34	42
418-Res-	36	42
441-Res-	37	42

a Includes +3 dB tonality adjustment

Table 8: Predicted operational noise levels for the night period (30% battery/inverter fan speed), dB LAeq,adj,1hr

Sensitive receptor	Predicted noise level ^a	Equivalent external acoustic quality objective
4-Res-	26	37
6-Res-	28	37
10-Res-	28	37
13-Res-	27	37
24-Res-	28	37
27-Res-	27	37
28-Res-	28	37
31-Res-	29	37
34-Res-	28	37
36-Res-	27	37
38-Res-	29	37
42-Res-	28	37
54-Res-	30	37
55-Res-	28	37
58-Res-	28	37
59-Res-	28	37
60-Res-	28	37
63-Res-	27	37
65-Res-	28	37
72-Res-	27	37
74-Res-	29	37
81-Res-	28	37
87-Res-	29	37
418-Res-	30	37
441-Res-	31	37

a Includes +3 dB tonality adjustment

7.0 DISCUSSION

7.1 Cassowary Coast Planning Scheme 2015

Operational noise from the Project is predicted to be below the equivalent external acoustic quality objectives at all sensitive receptors.

The equivalent external acoustic quality objectives were derived in Section 3.1 to align with noise requirements set out in PO5 and AO5.1 of the CCRC Planning Scheme.

A minimum margin of 5 dB or more during the day/evening period, and 6 dB or more during the night period is indicated, based on generally conservative modelling assumptions, including adjustments for tonality.

On this basis the project is capable of being a design, constructed and operated to align with the noise requirements of the CCRC Planning Scheme.

7.2 Environmental Protection (Noise) Policy 2019

7.2.1 Cumulative noise

The acoustic quality objective for a sensitive receptor, means 'the maximum level of noise that should be experienced in the acoustic environment of the sensitive receptor'. The means that cumulative noise together with other projects (existing or planned) must be addressed when considering the full requirements of the EPP 2019.

A number of sensitive receptors are located close to the two existing Tully substations, as shown in Appendix G. The figure also shows the location of the substations' main transformers considered in the cumulative noise assessment.

Direct noise measurement of the existing substations has not been carried out. Noise levels must therefore be estimated.

The following information about main transformers in each substation was obtained from the Proponent:

- North substation: 2x 132/22kV transformers. Power capacity from nameplate: 20 MVA
- South substation: 1x 275/132kV transformer. Power capacity from nameplate: 150/200/250 MVA.

The sound power levels associated with the substation transformers were derived considering AS 60076:10 based on the respective power capacity in MVA. This follows a similar approach to the Project transformers (refer Table 6).

For the Tully substations a range has been derived to reflect the 'reduced maximum' (being the lower end of the range) or 'standard maximum' (being the upper end of the range). This approximates potential noise levels from Tully substation transformers in the absence of a site specific noise survey.

The predicted cumulative noise levels during the day/evening period are shown in Table 9 and compared to the acoustic quality objectives for that period for the 5 most exposed receptors. An indication of compliance is provided considering the upper and lower end of the indicated ranges.

Table 9: Predicted cumulative noise levels, day/evening period, dB LAeq,adj,15min a

Sensitive receptor	Project	Substations	Cumulative	Acoustic quality objective	Compliance?
31-Res-	35	31-39	36-40	42	√ / √
38-Res-	34	29-37	35-39	42	√ / √
54-Res-	35	33-41	37-42	42	√ / √
74-Res-	35	31-39	36-40	42	√ / √
441-Res-	37	33-41	38-42	42	✓/✓

a Includes +3 dB tonality adjustment

This indicates that the risk for cumulative noise from the Project and Tully substations exceeding the acoustic quality objective is relatively limited, given the current conservatism adopted in the predictions for the Project.

The predicted cumulative noise levels during the night period are shown in Table 10 and compared to the acoustic quality objectives for that period. An indication of compliance is provided considering the upper and lower end of the indicated ranges.

Table 10: Predicted cumulative noise levels, night period, dB LAeq,adj,15min^a

Sensitive receptor	Project	Substations	Cumulative	Acoustic quality objective	Compliance?
31-Res-	29	31-39	33-39	37	√ / x
38-Res-	29	29-37	32-38	37	√ / x
54-Res-	30	33-41	35-41	37	√ / x
74-Res-	29	31-39	33-39	37	√ / x
441-Res-	31	33-41	35-41	37	√ / x

a Includes +3 dB tonality adjustment

This indicates that there is a moderate risk that cumulative noise from the Project and Tully substations may exceed the acoustic quality objectives, unless appropriate holistic mitigation is adopted into the Project.

At this stage of development the Project has considered noise mitigation to the extent that it is feasible to do so.

Additional or alternative noise mitigation will be considered during subsequent detailed design stages once existing noise levels from the Tully substations have been measured, additional OEM information is available and detailed performance of the facility is known e.g. charge and discharge rates. The primary noise mitigation strategy for any BESS project is robust and holistic detailed design with a focus on noise minimisation.

While full detailed design is not feasible at this stage, there is sufficient design and engineering noise mitigation opportunities available as the Project progresses that the moderate cumulative noise risk can be effectively managed and mitigated.

It should also be noted that the 'standard maximum' in AS 60076:10 is typically conservative and it is MDA's experience that noise levels associated with properly designed and manufactured transformers tend towards the 'reduced maximum' sound power level, rather than the 'standard maximum'.

It is recommended that an appropriate site survey be conducted to definitively measure existing noise from the substations, to replace the assumptions set out above. This would involve travelling to

site to conduct attended measurements in publicly accessible locations to determine noise contributions at receivers for the existing substation infrastructure. This may comprise measurements at the boundary of the subject facility, intermediate locations and/or receiver locations. No access to private property would be required. Attended measurements would be conducted for each assessment period (day/evening and night). The cumulative noise assessment should be reevaluated at that time.

7.2.2 Background creep and deterioration of the existing acoustic environment

Background creep

The EPP 2019 provides a qualitative management framework comprising a *management hierarchy* - which establishes an approach to avoiding, minimising or managing noise (to the extent that it is reasonable to do so), and the *management intent* - being matters that must be considered by the administering authority when making an environmental management decision. The framework is used to qualitatively evaluate the potential for background creep.

The EPP 2019 also recognises that in some situations it may be reasonable to increase the background noise levels but only to the extent the environmental values of the area are still protected.

This requires the Proponent must make all reasonable efforts to minimise or manage noise from the Project, while ensuring that the environmental values of the area are protected. Protection of the environmental values is managed by compliance with the acoustic quality objectives.

Section 6.2 sets out various conceptual mitigation measures for the reasonable management of noise. Final 'for construction' mitigation measures will be determined during detailed design stage. The current Project offers multiple material opportunities for noise minimisation.

The noise assessment indicates that with appropriate design development, the acoustic quality objectives applicable under the EPP 2019 are capable of being achieved, both in isolation and cumulatively.

On the basis that the acoustic quality objectives are capable of being achieved (therefore protecting the relevant environmental values) and that the proponent has demonstrated efforts to minimise noise where reasonable, background creep is capable of being managed in accordance with the management framework.

Existing acoustic environment

The existing acoustic environment is not known in detail, as a noise survey has not been carried out, however ambient noise levels at sensitive receptors are likely to be comprised of noise from the Tully substations, plus other local noise sources such as transportation and habitation noise.

Estimates of noise associated with the Tully substations have been carried out and are summarised in Section 7.2.1.

Table 9 and Table 10 indicate that noise from the Project during the night time is likely to be lower than existing noise from the Tully substations. Noise from the Project is therefore not expected to lead to deterioration of the existing acoustic environment at night.

Day time predicted noise levels for the Project are generally in the middle of the range of estimated noise levels from the Tully substations and are based on conservative assumptions. In addition, the acoustic environment at the sensitive receptors will include other local noise sources, likely leading to higher ambient noise environment than that of the substations alone.

Typical ambient noise levels for land use areas are generally not documented in Queensland policy or guidelines however there are other standards and state policies that can be referred to for context.

Appendix A of AS 1055.2-1997 provides estimated average background A-weighted noise levels (L_{A90}) for different areas with residences in Australia. ¹⁵ Indicated day-time levels range from 40-65 dB L_{A90} , with the lower of the range representing residences in areas with negligible transportation.

The NSW NPfl also provides typical existing background noise levels for receiver categories including 'Rural residential', indicating daytime levels of 40 dB L_{A90} (or less). 16

In all external environments, ambient noise levels (L_{Aeq}) would be greater than background noise levels (L_{A90}). The above documents can therefore be used as a source of guidance of potential ambient noise levels, in the absence of a site survey, and indicate that noise from the Project is comfortable below the typical day time ambient levels that are indicated.

On this basis noise from the Project is not expected to lead to deterioration of the existing acoustic environment during the day.

7.3 Summary

The predicted noise levels determined by the noise assessment indicate that, based on the information detailed in this report, the Project is capable of being designed and operated such that:

- Predicted Project noise levels are below the CCRC Planning Scheme AO5.1 criteria.
- Cumulative noise is likely to be below the EPP 2019 acoustic quality objectives, subject to determination of existing noise emissions from the Tully substations and holistic design development.
- Background creep and deterioration of existing acoustic environment, assessed under the EPP 2019, is minimised.

The above meets the provisions of EPP 2019 and the CCRC Planning Scheme PO5/AO5.1.

The cumulative noise levels at some locations are contingent on existing noise levels from the Tully substations. Predicted cumulative noise levels considering the Project and existing substations have the potential to be greater than the EPP 2019 acoustic quality objectives at the nearest receptors, where the 'standard maximum' transformer noise levels are considered.

Conversely, predicted cumulative noise levels are indicated to be below EPP 2019 acoustic quality objectives at the nearest receptors, where the 'reduced maximum' transformer noise levels are considered

This indicates that cumulative noise considerations are a material factor for the Project. It will be critical to have a detailed understanding of existing noise levels from the Tully substations to inform the ongoing design development of the Project.

Per Section 7.2, it is recommended that noise from the substations is measured and cumulative noise is reevaluated post approval, at the detailed design stage.

AS 1055.2:1997 Acoustics—Description and measurement of environmental noise Part 2: Application to specific situations (superseded by AS 1055:2018 Acoustics—Description and measurement of environmental noise).

¹⁶ NSW Environment Protection Authority, *Noise Policy for Industry*, October 2017 (NPfl)

The noise assessment adopts the following operational fan duties for the batteries:

- 50% fan duty during day/evening operation
- 30% fan duty during night operation.

This is to reflect the expected worst case fan operation during typical ambient temperatures based on information provided by the Proponent. These fan duties have been confirmed by the battery manufacturer as being appropriate for the expected ambient temperatures in the area.

The assessment in this report details one of several ways in which the Project could be designed and delivered whilst maintaining compliance with the applicable noise limits.

Where changes from any aspect of the assessment detailed in this report occur, e.g. during design development, tender or procurement, the changes must be reviewed to verify continued compliance of this Project. In particular, it is expected that further noise assessment should be conducted once a finalised Project design, equipment selections and associated manufacturer's noise data are determined.

To assist the ongoing development of the Project the following recommendations are provided:

- Design development (including layout, equipment selections and noise mitigation measures) to align with the requirements of the EPP 2019 as the Project progresses.
- Additional post-approval noise survey works to be carried out, including detailed evaluation of noise levels from current infrastructure (Tully Substations).
- Where Project changes occur, acoustic compliance to be verified via updated noise modelling and reporting this may comprise a final, 'for construction' noise model and report.
- Preparation of an operational noise management plan and detailed compliance test plan.

.

APPENDIX A GLOSSARY OF TERMINOLOGY

Term	Definition
A-weighting	A set of frequency-dependent sound level adjustments that are used to better represent how humans hear sounds. Humans are less sensitive to low and very high frequency sounds.
	Sound levels using an 'A' frequency weighting are expressed as dB L _A .
Background sound	The sound that is continuously present in a room our outdoor location. Often expressed as the A-weighted sound level exceeded for 90 $\%$ of a given time period i.e. L_{A90} .
dB	Decibel. The unit of sound level.
Frequency	Sound occurs over a range of frequencies, extending from the very low (e.g. thunder) to the very high (e.g. mosquito buzz). Measured in units of Hertz (Hz).
	Humans typically hear sounds between 20 Hz and 20 kHz. High frequency acuity naturally reduces with age most adults can hear up to 15 kHz.
Hertz (Hz)	The unit of frequency, named after Gustav Hertz (1887-1975). One hertz is one pressure cycle of sound per second.
	One thousand hertz – 1000 cycles per second – is a kilohertz (kHz).
L _{Aeq}	The equivalent continuous A-weighted sound level. Commonly referred to as the average sound level and is measured in dB.
L _{A90}	The A-weighted sound level exceeded for 90 $\%$ of the measurement period, measured in dB. Commonly referred to as the background noise level.
L _w	Sound Power Level. The calculated level of total sound power radiated by a sound source. Usually A-weighted i.e. LwA.
Octave band	The interval between one frequency and its double. Sound is divided into octave bands for analysis. The typical octave band centre frequencies are 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz and 4 kHz.

The basic quantities used within this document to describe noise adopt the conventions outlined in ISO 1996-1:2016. ¹⁷

Accordingly, all frequency weighted sound pressure levels are expressed as decibels (dB) in this report. For example, sound pressure levels measured using an 'A' frequency weighting are expressed as dB L_A . Alternative ways of expressing A-weighted decibels such as dBA or dB(A) are therefore not used within this report, unless included in a direct quote of external documentation.

Rp 001 20241144 - Tully BESS - Operational noise assessment

25

¹⁷ ISO 1996-1:2016 Acoustics - Description measurement and assessment of environmental noise – Basic quantities and assessment procedures.

APPENDIX B SENSITIVE RECEPTORS

Table 11 sets out the 343 sensitive receptors identified by the Proponent within 3 km of the Project boundary, together with their respective distance to the Project boundary.

Terrain elevation information is taken from correlating the geographic position of receptor and topographical data referenced in Section 5.0.

Table 11: Sensitive receptor co-ordinates, GDA2020 MGA zone 55

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
3-Res-	385,769	8,015,413	20	1,970
4-Res-	384,695	8,014,860	52	880
5-Res-	385,838	8,015,496	18	2,070
6-Res-	384,705	8,014,689	24	730
7-Res-	386,486	8,015,236	15	2,440
8-Res-	386,415	8,014,334	13	2,080
10-Res-	384,880	8,014,559	21	730
11-Res-	382,959	8,012,178	11	1,840
12-Res-	385,889	8,012,014	12	2,430
13-Res-	384,703	8,014,743	30	780
14-Res-	382,581	8,015,521	23	2,020
15-Res-	385,757	8,015,394	20	1,940
16-Res-	385,661	8,015,279	21	1,800
17-Res-	385,701	8,015,267	21	1,820
18-Res-	385,337	8,015,596	56	1,830
19-Res-	386,196	8,012,524	12	2,350
20-Res-	384,724	8,014,966	68	990
21-Res-	385,790	8,015,449	19	2,010
22-Res-	385,588	8,015,158	23	1,660
23-Res-	385,665	8,015,360	22	1,860
24-Res-	384,861	8,014,559	21	720
25-Res-	383,873	8,015,432	41	1,360
26-Res-	385,826	8,015,479	19	2,050
27-Res-	384,928	8,014,569	19	780
28-Res-	384,657	8,014,721	27	740
29-Res-	386,496	8,012,862	13	2,450
30-Res-	384,730	8,014,999	71	1,020
31-Res-	384,716	8,014,573	22	640

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
32-Res-	385,649	8,015,379	22	1,860
33-Res-	384,711	8,014,935	64	950
34-Res-	384,700	8,014,663	24	710
35-Res-	385,723	8,015,369	21	1,900
36-Res-	384,735	8,014,774	32	820
38-Res-	384,844	8,014,514	20	680
39-Res-	385,199	8,014,574	23	1,000
40-Res-	385,743	8,015,382	20	1,930
41-Res-	385,803	8,015,466	19	2,030
42-Res-	385,048	8,014,372	15	770
43-Res-	386,459	8,014,727	15	2,210
44-Res-	384,667	8,014,947	56	950
45-Res-	385,676	8,015,296	22	1,820
46-Res-	385,259	8,014,793	53	1,170
47-Res-	386,459	8,013,892	13	2,110
48-Res-FORESTLAND	385,838	8,014,130	14	1,490
49-Res-	386,021	8,012,004	11	2,530
51-Res-	384,749	8,015,041	70	1,070
52-Res-	385,778	8,015,436	20	1,990
53-Res-	385,232	8,014,433	18	960
54-Res-	384,599	8,014,580	21	580
55-Res-	384,872	8,014,514	20	700
56-Res-	385,924	8,015,523	17	2,150
57-Res-	382,918	8,015,781	26	2,020
58-Res-	384,700	8,014,636	24	680
59-Res-	384,225	8,014,872	31	810
60-Res-	384,903	8,014,557	20	750
61-Res-	385,449	8,015,640	39	1,930
62-Res-	385,744	8,015,289	21	1,860
63-Res-	384,862	8,014,636	24	780
64-Res-	385,852	8,015,558	18	2,130
65-Res-	384,651	8,014,673	24	690
66-Res-	386,470	8,014,866	15	2,270

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
67-Res-	385,738	8,015,416	20	1,950
68-Res-	387,174	8,013,535	13	2,870
69-Res-	386,124	8,012,349	12	2,380
70-Res-	384,693	8,014,834	48	850
71-Res-	384,545	8,014,880	36	850
72-Res-	384,659	8,014,773	35	780
73-Res-	385,723	8,015,268	21	1,830
74-Res-	384,643	8,014,595	22	620
75-Res-	385,680	8,015,367	22	1,870
76-Res-	386,088	8,011,945	12	2,620
77-Res-	385,118	8,014,557	20	920
78-Res-	386,192	8,012,400	12	2,410
79-Res-	386,800	8,013,142	13	2,610
80-Res-	383,084	8,015,672	27	1,840
81-Res-	384,710	8,014,715	25	750
83-Res-	385,631	8,015,365	23	1,830
84-Res-	384,711	8,014,905	59	930
85-Res-	387,175	8,013,616	14	2,860
86-Res-	386,092	8,011,916	11	2,640
87-Res-	384,692	8,014,610	23	660
88-Res-	385,434	8,014,848	29	1,350
89-Res-	385,872	8,016,475	26	2,860
90-Res-	385,865	8,016,441	26	2,830
91-Res-	385,822	8,016,453	27	2,820
92-Res-	385,795	8,016,457	28	2,810
93-Res-	385,810	8,016,510	28	2,860
94-Res-	385,756	8,016,517	29	2,840
95-Res-	385,761	8,016,497	29	2,820
96-Res-	385,758	8,016,459	29	2,790
97-Res-	385,732	8,016,465	31	2,780
98-Res-	385,703	8,016,472	31	2,770
99-Res-	385,683	8,016,472	33	2,760
100-Res-	385,693	8,016,509	32	2,800

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
101-Res-	385,691	8,016,535	32	2,820
102-Res-	385,695	8,016,552	32	2,840
103-Res-	385,702	8,016,569	32	2,860
104-Res-	385,646	8,016,581	33	2,840
105-Res-	385,644	8,016,564	34	2,830
106-Res-	385,650	8,016,541	34	2,810
107-Res-	385,645	8,016,523	35	2,790
108-Res-	385,644	8,016,501	35	2,770
109-Res-	385,613	8,016,491	37	2,750
110-Res-	385,583	8,016,494	39	2,740
111-Res-	385,562	8,016,499	41	2,730
112-Res-	385,566	8,016,534	39	2,760
113-Res-	385,573	8,016,550	38	2,780
114-Res-	385,579	8,016,575	37	2,810
115-Res-	385,584	8,016,594	37	2,830
116-Res-	385,536	8,016,600	40	2,810
117-Res-	385,532	8,016,580	41	2,790
118-Res-	385,522	8,016,544	41	2,750
119-Res-	385,521	8,016,525	42	2,740
120-Res-	385,516	8,016,503	43	2,720
121-Res-	385,457	8,016,577	47	2,760
122-Res-	385,454	8,016,537	47	2,720
123-Res-	385,412	8,016,589	51	2,750
124-Res-	385,401	8,016,551	51	2,710
125-Res-	385,394	8,016,528	52	2,690
126-Res-	385,389	8,016,488	55	2,650
127-Res-	385,390	8,016,471	56	2,630
128-Res-	385,378	8,016,448	58	2,610
129-Res-	385,378	8,016,430	58	2,590
130-Res-	385,357	8,016,410	60	2,560
131-Res-	385,423	8,016,421	54	2,600
132-Res-	385,430	8,016,442	53	2,620
133-Res-	385,432	8,016,462	52	2,640

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
134-Res-	385,451	8,016,477	50	2,660
135-Res-	385,510	8,016,465	46	2,680
136-Res-	385,502	8,016,443	47	2,660
137-Res-	385,499	8,016,426	47	2,640
138-Res-	385,495	8,016,406	47	2,620
139-Res-	385,483	8,016,370	48	2,580
140-Res-	385,550	8,016,453	43	2,680
141-Res-	385,570	8,016,447	41	2,690
142-Res-	385,591	8,016,445	40	2,700
143-Res-	385,612	8,016,441	38	2,700
144-Res-	385,632	8,016,439	37	2,710
145-Res-	385,624	8,016,389	36	2,660
146-Res-	385,908	8,016,389	24	2,810
147-Res-	385,904	8,016,367	23	2,790
148-Res-	385,900	8,016,345	23	2,770
149-Res-	385,898	8,016,324	23	2,750
150-Res-	385,891	8,016,306	23	2,730
151-Res-	385,886	8,016,286	24	2,710
152-Res-	385,949	8,016,281	21	2,740
153-Res-	385,977	8,016,350	21	2,820
154-Res-	385,982	8,016,375	22	2,840
155-Res-	386,023	8,016,364	20	2,850
156-Res-	386,018	8,016,343	20	2,830
157-Res-	385,610	8,016,335	38	2,610
158-Res-	385,622	8,016,317	38	2,600
159-Res-	385,622	8,016,294	38	2,580
160-Res-	385,618	8,016,270	40	2,560
161-Res-	385,612	8,016,238	42	2,520
162-Res-	385,606	8,016,208	42	2,500
163-Res-	385,592	8,016,238	45	2,510
164-Res-	385,575	8,016,259	48	2,530
165-Res-	385,563	8,016,282	49	2,540
166-Res-	385,546	8,016,287	50	2,540

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
167-Res-	385,526	8,016,294	51	2,530
168-Res-	385,479	8,016,244	56	2,470
169-Res-	385,507	8,016,243	55	2,480
170-Res-	385,530	8,016,244	54	2,490
171-Res-	385,546	8,016,232	52	2,490
172-Res-	385,554	8,016,214	48	2,480
173-Res-	385,569	8,016,192	43	2,460
174-Res-	385,586	8,016,161	34	2,440
175-Res-	385,689	8,016,078	24	2,430
176-Res-	385,712	8,016,075	24	2,440
177-Res-	385,734	8,016,076	24	2,450
178-Res-	385,760	8,016,067	21	2,460
179-Res-	385,782	8,016,069	20	2,470
180-Res-	385,801	8,016,046	19	2,470
181-Res-	385,811	8,016,031	19	2,460
182-Res-	385,820	8,016,005	18	2,440
183-Res-	385,778	8,016,007	19	2,420
184-Res-	385,754	8,016,016	19	2,420
185-Res-	385,725	8,016,014	19	2,400
186-Res-	385,876	8,016,195	22	2,630
187-Res-	385,887	8,016,162	21	2,610
188-Res-	385,879	8,016,241	22	2,670
189-Res-	385,935	8,016,226	20	2,690
190-Res-	385,860	8,016,110	21	2,550
191-Res-	385,880	8,016,082	20	2,540
192-Res-	385,892	8,016,064	19	2,540
193-Res-	385,860	8,016,041	19	2,500
194-Res-	385,849	8,016,064	20	2,510
195-Res-	385,829	8,016,089	21	2,520
196-Res-	385,901	8,016,138	20	2,600
197-Res-	385,915	8,016,112	20	2,590
198-Res-	385,806	8,015,960	18	2,400
199-Res-	385,788	8,015,963	18	2,390

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
200-Res-	385,765	8,015,965	18	2,380
201-Res-	385,709	8,015,970	20	2,350
202-Res-	385,685	8,015,972	20	2,340
203-Res-	385,662	8,015,976	21	2,330
204-Res-	385,669	8,015,919	22	2,290
205-Res-	385,686	8,015,917	22	2,290
206-Res-	385,705	8,015,915	21	2,300
207-Res-	385,723	8,015,914	21	2,310
208-Res-	385,752	8,015,916	19	2,330
209-Res-	385,770	8,015,907	19	2,340
210-Res-	385,798	8,015,907	18	2,350
211-Res-	385,825	8,015,962	18	2,410
212-Res-	385,597	8,015,966	24	2,290
213-Res-	385,574	8,015,976	24	2,280
214-Res-	385,557	8,015,964	25	2,260
215-Res-	385,532	8,015,968	28	2,250
216-Res-	385,516	8,016,009	28	2,280
217-Res-	385,494	8,016,007	31	2,270
218-Res-	385,476	8,016,013	33	2,260
219-Res-	385,473	8,015,965	32	2,220
220-Res-	385,494	8,015,944	28	2,210
221-Res-	385,447	8,015,973	35	2,210
222-Res-	385,433	8,015,976	36	2,210
223-Res-	385,395	8,015,989	40	2,200
224-Res-	385,409	8,016,038	38	2,250
225-Res-	385,921	8,016,023	17	2,520
226-Res-	385,872	8,015,976	17	2,450
227-Res-	385,876	8,015,953	17	2,440
228-Res-	385,888	8,015,889	17	2,400
229-Res-	385,978	8,015,891	17	2,460
230-Res-	385,977	8,015,873	17	2,440
231-Res-	385,981	8,015,845	17	2,420
232-Res-	385,842	8,015,847	17	2,330

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
233-Res-	385,835	8,015,825	17	2,310
234-Res-	385,827	8,015,797	17	2,290
235-Res-	385,817	8,015,783	17	2,270
236-Res-	385,806	8,015,766	17	2,250
237-Res-	385,792	8,015,844	17	2,300
238-Res-	385,769	8,015,845	18	2,290
239-Res-	385,748	8,015,847	18	2,280
240-Res-	385,725	8,015,853	18	2,270
241-Res-	385,702	8,015,854	18	2,250
242-Res-	385,768	8,015,801	18	2,250
243-Res-	385,749	8,015,803	18	2,240
244-Res-	385,723	8,015,805	18	2,230
245-Res-	385,700	8,015,807	19	2,210
246-Res-	385,671	8,015,805	20	2,200
247-Res-	385,672	8,015,855	19	2,240
248-Res-	385,649	8,015,856	19	2,220
249-Res-	385,608	8,015,853	20	2,200
250-Res-	385,603	8,015,845	20	2,190
251-Res-	385,597	8,015,827	21	2,170
252-Res-	385,587	8,015,812	21	2,150
253-Res-	385,576	8,015,795	23	2,130
254-Res-	385,569	8,015,777	24	2,110
255-Res-	385,634	8,015,784	22	2,160
256-Res-	385,621	8,015,764	23	2,130
257-Res-	385,606	8,015,740	24	2,100
258-Res-	385,538	8,015,744	28	2,070
259-Res-	385,516	8,015,728	30	2,040
260-Res-	385,496	8,015,713	33	2,020
261-Res-	385,453	8,015,695	38	1,980
262-Res-	385,433	8,015,690	39	1,960
263-Res-	385,473	8,015,647	37	1,950
264-Res-	385,493	8,015,657	35	1,970
265-Res-	385,407	8,015,627	45	1,900

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
266-Res-	385,677	8,015,773	21	2,170
267-Res-	385,670	8,015,757	21	2,160
268-Res-	385,676	8,015,728	20	2,140
269-Res-	385,699	8,015,716	19	2,140
270-Res-	385,717	8,015,710	18	2,150
271-Res-	385,707	8,015,776	20	2,190
272-Res-	385,726	8,015,762	19	2,200
273-Res-	385,746	8,015,753	18	2,200
274-Res-	385,758	8,015,778	18	2,230
275-Res-	385,785	8,015,732	18	2,210
276-Res-	385,773	8,015,715	18	2,190
277-Res-	385,762	8,015,702	18	2,170
278-Res-	385,751	8,015,684	18	2,150
279-Res-	385,941	8,015,549	17	2,180
280-Res-	385,372	8,015,996	43	2,200
281-Res-	385,354	8,016,001	45	2,190
282-Res-	385,334	8,016,004	49	2,190
283-Res-	385,427	8,016,029	37	2,250
284-Res-	385,204	8,015,623	71	1,790
285-Res-	385,296	8,015,625	59	1,840
286-Res-	385,318	8,015,583	57	1,810
287-Res-	385,359	8,015,381	40	1,670
288-Res-	385,310	8,014,699	40	1,160
289-Res-	383,068	8,011,000	12	2,890
290-Res-	383,795	8,011,437	11	2,350
320-Res-	385,728	8,015,968	19	2,360
325-Res-	385,458	8,016,015	35	2,250
329-Res-	385,877	8,015,918	17	2,410
330-Res-	385,923	8,015,970	17	2,480
339-Res-	385,775	8,016,531	28	2,860
340-Res-	385,664	8,016,034	21	2,380
352-Res-	385,442	8,016,515	48	2,690
368-Res-	385,079	8,014,545	19	880

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
375-Res-	386,882	8,015,140	14	2,760
376-Res-	386,887	8,015,187	14	2,780
393-Res-	386,877	8,015,117	14	2,740
401-Res-	386,097	8,015,789	17	2,460
410-Res-	384,114	8,015,112	31	1,040
418-Res-	384,991	8,013,688	13	730
419-Res-	383,805	8,015,118	26	1,060
433-Res-	385,281	8,014,552	24	1,060
441-Res-	384,398	8,014,527	19	480
448-Res-	385,392	8,013,947	13	1,050
458-Res-	385,105	8,014,470	18	860
462-Res-	387,110	8,013,472	13	2,820
466-Res-	384,699	8,014,801	40	830
467-Res-	385,192	8,014,692	30	1,060
468-Res-	382,940	8,011,789	11	2,190
469-Res-	385,837	8,014,122	14	1,490
470-Res-	385,626	8,015,640	23	2,040
471-Res-	385,658	8,015,622	20	2,040
472-Res-	385,634	8,015,589	23	2,000
473-Res-	385,680	8,015,568	19	2,020
474-Res-	385,686	8,015,588	19	2,040
475-Res-	385,693	8,015,599	19	2,050
476-Res-	385,702	8,015,610	18	2,060
477-Res-	385,710	8,015,621	18	2,080
478-Res-	385,717	8,015,634	18	2,090
479-Res-	385,724	8,015,645	18	2,100
480-Res-	385,626	8,015,711	21	2,090
481-Res-	385,513	8,015,666	32	1,990
482-Res-	385,411	8,015,680	42	1,940
483-Res-	385,389	8,015,675	45	1,930
484-Res-	385,367	8,015,669	48	1,910
485-Res-	385,298	8,015,569	57	1,790
486-Res-	385,251	8,015,638	64	1,820

Sensitive receptor	Easting, m	Northing, m	Terrain elevation, m	Distance to project boundary, m
487-Res-	385,242	8,015,591	62	1,780
489-Res-	384,709	8,014,872	53	900
Educational				_
50-Edu-	385,694	8,015,384	21	1,890
292-Edu-ST CLARES SCHOOL TULLY	385,763	8,016,350	26	2,700
293-Edu-TULLY STATE SCHOOL	385,784	8,016,224	26	2,600
294-Edu-TULLY STATE SCHOOL	385,803	8,016,218	25	2,610
295-Edu-TULLY STATE SCHOOL	385,764	8,016,254	25	2,620
296-Edu-TULLY STATE SCHOOL	385,844	8,016,269	24	2,670
297-Edu-TULLY STATE SCHOOL	385,832	8,016,251	24	2,650
298-Edu-TULLY STATE SCHOOL	385,818	8,016,289	24	2,680
299-Edu-TULLY STATE SCHOOL	385,794	8,016,295	24	2,670
300-Edu-TULLY STATE SCHOOL	385,791	8,016,325	24	2,690
301-Edu-TULLY STATE SCHOOL	385,818	8,016,315	24	2,700
302-Edu-TULLY STATE SCHOOL	385,831	8,016,337	25	2,720
465-Edu-TULLY STATE SCHOOL	385,837	8,016,236	23	2,640
Commercial				
308-Com-Community Centre	385,920	8,016,435	24	2,850
438-Com-	385,624	8,016,625	33	2,870

APPENDIX C ENVIRONMENTAL PROTECTION (NOISE) POLICY 2019 SUMMARY

The *Environmental Protection Act 1994* (EP Act) forms part of a legislative framework that regulates noise from domestic, commercial and industrial premises. Noise is regulated under the EP Act and subordinate legislation including the *Environmental Protection Regulation 2019* (EP Regulation), and the *Environmental Protection (Noise) Policy 2019* (EPP 2019).

Local councils are generally responsible for responding to issues relating to noise that is regulated under the EP Act and have the ability to make local laws (e.g. CCRC Planning Scheme) to manage specific noise issues in their local area, in addition to the EPP 2019.

C1 Environmental values and acoustic quality objectives

The EPP 2019 provides a framework for making consistent and informed decisions that relate to the acoustic environment, specifically for the enhancement and protection of relevant environmental values.

The environmental values to be enhanced or protected include:

- (a) the qualities of the acoustic environment that are conducive to protecting the health and biodiversity of ecosystems; and
- (b) the qualities of the acoustic environment that are conducive to human health and wellbeing, including by ensuring a suitable acoustic environment for individuals to do any of the following:
 - (i) sleep;
 - (ii) study or learn;
 - (iii) be involved in recreation, including relaxation and conversation; and
- (c) the qualities of the acoustic environment that are conducive to protecting the amenity of the community.

The EPP 2019 defines acoustic quality objectives (assessed at sensitive land uses) to achieve the above environmental values. The acoustic quality objective for a sensitive receptor, means 'the maximum level of noise that should be experienced in the acoustic environment of the sensitive receptor'.

The acoustic quality objectives are derived from the WHO (World Health Organization) aspirational targets and exclude noise from transportation, safety devices, domestic, and occupational noise sources – i.e., they apply to noise from industrial/commercial/trade premises.

The relevant environmental values set out in the EPP 2019 are detailed in Table 12 alongside associated acoustic quality objectives. Only relevant sensitive receptor classifications are reproduced.

Table 12: Acoustic quality objectives

Sensitive receptor	Time of day	Acoustic qu	ality objectiv	Environmental value	
		L _{Aeq,adj,1hr}	L _{A10,adj,1hr}	L _{A1,adj,1hr}	
Residence (outdoors)	Day and evening 0700-2200 hrs	50	55	65	Health and wellbeing
Residence (indoors)	Day and evening 0700-2200 hrs	35	40	45	Health and wellbeing
Residence (indoors)	Night 2200-0700 hrs	30	35	40	Health and wellbeing, in relation to the ability to sleep
Library or educational institution (indoors)	When open for business or classes being offered	35			Health and wellbeing
School or playground (outdoors)	When the children usually play outside	55			Health and wellbeing, and community amenity
Commercial and retail activity (for indoors)	When the activity is open for business	45			Health and wellbeing, in relation to the ability to converse

a Applicable at the sensitive receptor

Due to the typical characteristics of noise generation associated with the Project, being steady state continuous noise generated by operation of facility equipment, the $L_{Aeq,adj,1hr}$ descriptor is primarily relevant. The $L_{Aeq,adj,1hr}$ is the A-weighted sound pressure level of a continuous steady sound, adjusted for tonal character or impulsiveness.

The EPP 2019 acoustic quality objectives provide objectives for both internal acoustic amenity within a residence and acoustic amenity for outdoor areas (e.g. relaxation and conversation outdoors). For this reason, no objective for external amenity is provided at night.

It is necessary to consider both the internal and external objectives since the outdoor objective is **not** the same as the 'equivalent outdoor level' to the internal objective. Hence it is still possible to be exceeding the internal objectives even when the outdoor objectives are complied with.

Further guidance can be found in the Noise and Vibration EIS Information Guideline which states:¹⁸

When assessing outdoor to indoor noise attenuation at sensitive receptors, do not use the World Health Organisation guideline's value of 25dB as it was developed for European buildings with double-glazed windows. Instead, use an outdoor to indoor attenuation value of 7dB, which is appropriate for typical Queensland buildings with open windows.

This has implications in defining external acoustic quality objectives applicable during the night and constraining acoustic quality objectives applicable during the day and evening periods, such that the indoor acoustic quality objectives can be achieved.

¹⁸ Noise and Vibration EIS Information Guideline, Queensland Government, dated 2022.

Based on the Noise and Vibration EIS Information Guideline the revised acoustic quality objectives relevant for assessment of the Project, applying outdoors at all nominated receptors are:

Residential

Day and evening:
 42 dB L_{Aeq,adj,1hr}

Night: 37 dB L_{Aeq,adj,1hr}

Library or educational institution

When open for business or classes being offered:
 42 dB L_{Aeq,adi,1hr}

Commercial

When the activity is open for business:
 52 dB L_{Aeq,adj,1hr}

The EPP 2019 also does not define the actual point of assessment for external objectives. In some jurisdictions it is within 10 m of the dwelling or at the nearest boundary, whichever is closer, but given the large scale of many rural Queensland grazing or farming properties, the general industry practise is to conduct the assessment in the vicinity of the dwelling and not at a boundary, which in many cases might be several kilometres away from the dwelling.

The Noise Measurement Manual, as referenced in the EPP 2019, prescribes the processes required to measure noise in accordance with the EP Act and relevant legislation and subordinate policies which include the EPP 2019.¹⁹ This includes procedures for adjusting measured noise levels for audible characteristics including tonality, impulsiveness, and low frequency noise.

C2 Background creep

The EPP 2019 also defines the management intent for noise and states the following at Clause (2) of Section 9:

- (a) To the extent it is reasonable to do so, noise must be dealt with in a way that ensures —the noise does not have any adverse effect, or potential adverse effect, on an environmental value under this policy; and
- (b) background creep in an area or place is prevented or minimised.

Clause (4) of Section 9 then states:

In this section -

background creep, for noise in an area or place, means a gradual increase in the total amount of background noise in the area or place as measured under the document called the 'Noise measurement manual' published on the department's website.

Further guidance with respect to background creep is provided in the EPP Explanatory Notes which state:²⁰

The intent is to prevent or minimise background creep so that the background noise does not increase higher and higher over time to a point where it is unreasonable for the area or place....

In some situations it may be reasonable to allow a greater increase to the background noise in an area or place. That may be the case in an area or place with very low background noise where an activity will increase the background noise levels but only to the extent the environmental values of the area are still protected.

¹⁹ *Noise Measurement Manual*, Queensland Government, dated 2020.

Environmental Protection (Noise) Policy 2019 Explanatory notes for SL 2019 No. 154 (Explanatory Notes), Queensland Government

Specific numerical criteria for the assessment of background creep are not provided in the EPP 2019.

A management framework is however provided comprising a *management hierarchy* - which establishes an approach to avoiding, minimising or managing noise (to the extent that it is reasonable to do so), and the *management intent* - being matters that must be considered by the administering authority when making an environmental management decision. The framework is used to qualitatively evaluate the potential for background creep.

It is noted that the repealed EPP 2008 previously provided direct numerical criterion for the assessment of background creep.²¹ Further details are provided in Appendix D.

Rp 001 20241144 - Tully BESS - Operational noise assessment

²¹ Queensland Government Environmental Protection (Noise) Policy 2008, SL No. 442 (EPP 2008) -which was repealed by the issue of the 2019 version of the EPP

APPENDIX D REPEALED EPP 2008 BACKGROUND CREEP CRITERIA

The EPP 2008 was repealed on the publication of the Epp 2019 on 1 September 2019.

Section 10 of the EPP 2008 relates to controlling background creep and states:

- 2) To the extent that it is reasonable to do so, noise from an activity must not be-
 - a) for noise that is continuous noise measured by $L_{A90,T}$ more than nil dB(A) greater than the existing acoustic environment measured by $L_{A90,T}$; or
 - b) for noise that varies over time measured by $L_{Aeq,adj,T}$ more than 5dB(A) greater than the existing acoustic environment measured by $L_{A90,T}$.

These criteria were deliberately removed during drafting of the EPP 2019 and are no longer relevant or applicable. The numerical criteria were replaced by alternative requirements in the EPP 2019 which are directed at preventing or minimising background creep to the extent that it is reasonable to do so.

APPENDIX E NOISE MODELLING

E1 Noise prediction method

A computer model was created in the environmental noise modelling program SoundPLANnoise v9.1 to predict noise levels from the proposed development to relevant noise-affected receivers in the vicinity of the subject site. The noise model has been used to calculate noise levels at the nearest noise-affected premises in accordance with ISO 9613-2.²²

The noise model enables the calculation of noise levels over a wide area, and accounts for key considerations including site arrangement, terrain, and atmospheric conditions.

The ISO 9613-2 standard specifies an engineering method for calculating noise at a known distance from a variety of sources under meteorological conditions that are favourable to sound propagation. The standard defines favourable conditions as downwind propagation where the source blows from the source to the receiver within an angle of ± 45 degrees from a line connecting the source to the receiver, at wind speeds between approximately 1 m/s and 5 m/s, measured at a height of 3 m to 11 m above the ground. Equivalently, the method accounts for average propagation under a well-developed moderate ground based thermal inversion.

Accordingly, predictions based on ISO 9613-2 account for the instances when local atmospheric conditions at the site favour the propagation of sound to surrounding receptor locations. Under alternative atmospheric conditions, such as when the wind is blowing from a receiver location to the development site, the noise levels would be lower than calculated.

To calculate far-field noise levels according to ISO 9613-2, the noise levels of each source are firstly characterised in the form of octave band frequency levels. A series of octave band attenuation factors are then calculated for a range of effects including:

- geometric divergence
- air absorption
- reflecting obstacles
- screening
- ground reflections.

The octave band attenuation factors are then applied to the noise data to determine the corresponding octave band and total calculated noise level at relevant receiver locations.

In some case third octave band noise data is used to provide a preliminary assessment of potential tonality.

The geometries in the model are simplified representations of the built environment that have been configured to a level of detail that is appropriate for noise calculation purposes.

²² ISO 9613-2:2024 Acoustics – Attenuation of sound during propagation outdoors – Part 2: Engineering method for the prediction of sound pressure levels outdoors (ISO 9613-2).

E2 Noise model configuration

The parameters detailed in Table 13 were utilised to develop the noise model.

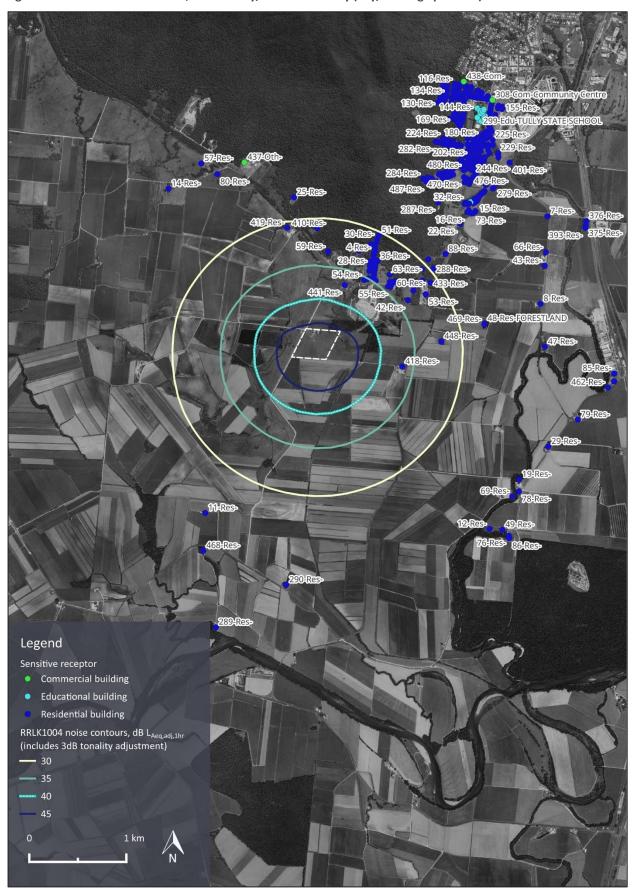
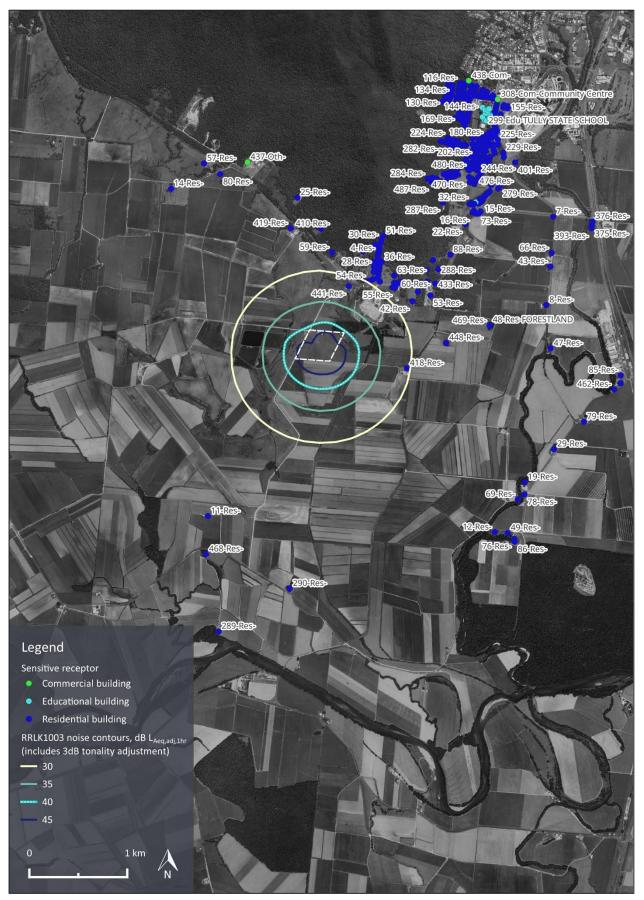
Table 13: Noise model configuration

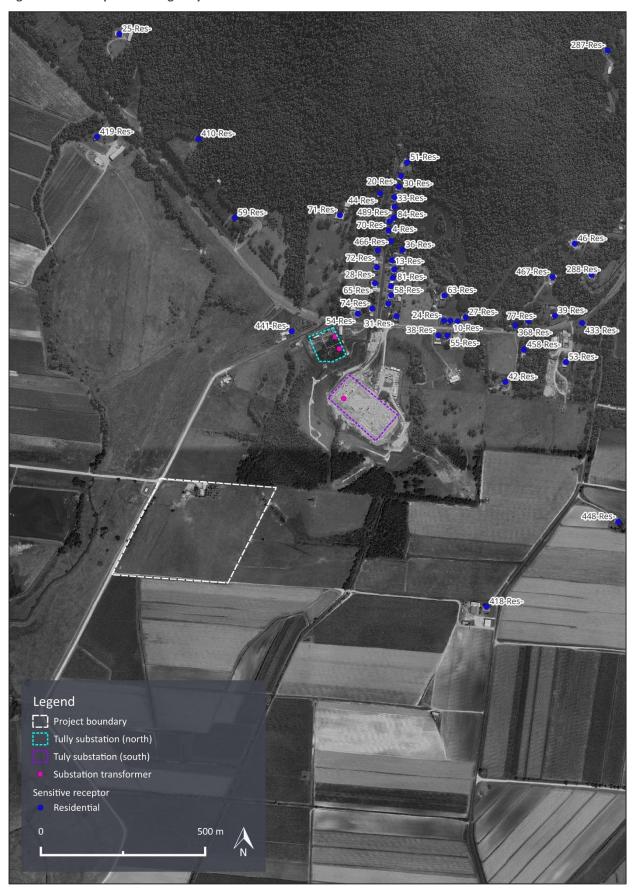
Feature	Description
Terrain data	Digital elevation model (DEM) with 1m grid size provided by the Proponent, supplemented by 5 m grid size DEM from publicly available information (Elvis Elevation and Depth). ²³
	The interface between the DEM datasets was inspected for discrepancies and none were found.
Environmental ground conditions	Ground conditions on the Project site were assigned a ground factor (G) of 0 representing 'hard ground'
	The surrounding area has been assigned a G of 1 to reflect porous ground 'suitable for growth of vegetation'.
	This aligns with guidance set out in Section 7.3.1 of ISO 9613-2.
Atmospheric conditions	Temperature 10 °C and relative humidity 70%.
	These represent conditions which result in relatively low levels of atmospheric sound absorption, resulting in slightly higher predicted noise levels.
Candidate Project layout	Provided by the Proponent.
Dwelling height	Assumed to be single storey (based on aerial observations).
Receiver height	1.5 m above ground.
Noise calculation method	Noise model calculated according to ISO 9613-2.
Noise data for all equipment	Detailed in Section 6.1.
	Noise data has been derived based on:
	candidate OEM data provided by the Proponent
	empirical standards
Reflection order	3

²³ Online at https://elevation.fsdf.org.au/

APPENDIX F NOISE CONTOURS

Figure 3: Predicted noise contours, 50% battery/inverter fan duty (day/evening operation)


Figure 4: Predicted noise contours, 30% battery/inverter fan duty (night operation)

APPENDIX G TULLY SUBSTATIONS

Figure 5: Location plan showing Tully substations

MFMO

Project:	Tully BESS	Document No.:	Mm	001 R01		
То:	Attexo Group Pty Ltd	Date:	6 No			
Attention:	Sue Walker	Cross Reference:	Rp C	001 20241144		
Email:	sue.walker@attexo.com.au	Project No.:	202	20241144		
From:	Jarek Gil	No. Pages:	10	Attachments:	No	
Subject:	Tully substation noise survey and updated cumulative assessment					

EXECUTIVE SUMMARY

This memo summarises results of an attended noise survey related to the existing substations in Tully and an updated assessment of cumulative noise levels together with the proposed Tully BESS.

The survey resulted in an improved understanding of the substation transformer noise emissions. Predicted cumulative noise levels in this revised assessment are below the Queensland Government *Environmental Protection (Noise) Policy 2019* acoustic quality objectives at all receptors for both day/evening and night periods. The revised assessment therefore indicates that the risk for cumulative noise from the proposed Tully BESS and the existing Tully substations exceeding the acoustic quality objectives is limited.

Notwithstanding the above, cumulative noise risks should be considered as the proposed Tully BESS moves through subsequent stages of development.

INTRODUCTION

Marshall Day Acoustics (Australia) Pty Ltd (MDA) have carried out an operational noise assessment of the Tully BESS project (Project). The results of the assessment were summarised in report Rp 001 20241144, dated 23 September 2025.¹

Rp 001 20241144 included a cumulative noise assessment adopting assumed noise levels for transformers within the 2 existing Tully substations. Noise levels for the transformers were derived using AS 60076:10.² A range of assumed sound power levels of the transformers were used, corresponding to the 'reduced maximum' and 'standard maximum' formulas given in AS 60076:10. The predicted cumulative noise levels ranged from below to above the acoustic quality objectives, depending on the transformer noise emissions.

Following issued of Rp 001 20241144, Attexo Group Pty Ltd (Attexo) have engaged MDA to carry out an attended survey of noise related to the existing substations in Tully. The purpose of the noise survey is to:

- evaluate existing noise levels from the Tully substations and confirm (or otherwise) that assumed transformer noise levels in Rp 001 20241144 are representative
- evaluate the emergence and audibility of existing transformer noise at nearby residences
- evaluate tonality associated with the existing transformers
- update the cumulative noise assessment for the Project and substations, where required.

The survey results and updated cumulative noise assessment are documented herein. The noise survey results can also be used to inform the detailed design development that may be required for the Project, post-approval.

This memo should be reviewed alongside Rp 001 20241144 for cross referencing purposes.

¹ Rp 001 20241144 - Tully BESS - Operational noise assessment (Rp 001 20241144), dated 23 September 2025.

² AS 60076.10:2023 Power transformers, Part 10: Determination of sound levels (IEC 60076-10:2016 (ED. 2.0) MOD)

ACOUSTIC QUALITY OBJECTIVES

Acoustic quality objectives applicable to the Project have previously been derived as part of Rp 001 20241144, in accordance with the Planning Scheme and the EPP 2019.³

Under the EPP 2019, the acoustic quality objective for a sensitive receptor, means 'the maximum level of noise that should be experienced in the acoustic environment of the sensitive receptor'. It is therefore considered a total noise amenity criterion for a sensitive receptor, considering the total noise from all sources.⁴

Assessment of noise from the Project under EPP 2019 therefore requires total noise from the Project and other existing noise sources (primarily the existing Tully substations) to be below the acoustic quality objectives set out in Table 1.

Table 1: Equivalent outdoor acoustic quality objectives, dB LAeq,adj,1hr

Sensitive receptor	Time period		
	Day/evening (07:00-22:00)	Night (22:00-07:00)	
Residence	42	37	
Library and educational institution	42	-	
Commercial and retail activity	52	-	

A map showing the relative location of the Project, sensitive receptors and the 2 Tully substations is provided in Appendix A.

NOISE SURVEY

The noise survey was carried out between 23:15 on 15 October 2025 and 12:30 on 16 October 2025.

The weather conditions during the noise survey were appropriate for assessment, with low easterly wind (below 5 m/s) and occasional light drizzle.

The measurement instrumentation is documented in Table 2. All equipment was calibrated before and after measurements with no significant drift (<1 dB) indicated.

Table 2: Survey equipment details

Equipment	Application	Model	Serial number	Independent calibration date ^a
Noise monitor	Noise logging	NTi XL3	A3A-01250- F0	03/09/2024
Sound level meter	Hand-held measurements	Brüel & Kjær Type 2250	3009588	13/12/2024
Calibrator	Calibration	01 dB Cal 21	34924044	12/09/2025

a Independent (laboratory) calibration date to be within 2 years of measurement period as per AS 1055:2018 ⁵

³ Cassowary Coast Regional Council Planning Scheme 2015 (v.4), 3 July 2015 (Planning Scheme); Queensland Government *Environmental Protection (Noise) Policy 2019* (EPP 2019)

⁴ Excluding noise sources described in Schedule 1, Part 1, Section 1 of the EP Act. For the Project excluded noise sources would be public roads or State-controlled roads.

⁵ AS 1055:2018 Acoustics – Acoustics — Description and measurement of environmental noise

The noise measurement locations are shown in Appendix B and tabulated in Table 3 and Table 4.

Table 3: Noise measurement locations – Intermediate locations

Location	Address	Approximate distance to Project, m	Approximate distance to nearest transformer, m
A [noise logging]	-	-	35
В	-	-	85
С	-	-	30

Table 4: Noise measurement locations – Residential receptors

Location	Address	Approximate distance to Project, m	Approximate distance to nearest transformer, m
441-Res-	8 Sandy Creek Road	480	105
31-Res-	156 Tully Gorge Road	640	180
74-Res-	3 Maple Terrace	620	115
54-Res-	170 Tully Gorge Road	580	75

Noise logging

Noise levels and audio were recorded continuously throughout the noise survey at location A. The recording of audio allows for review and validation during post-processing.

A graph of noise logging results at location A is provided in Appendix C.

Ambient noise levels are clearly dominated by transient noise events. During the night these were associated with sporadic local traffic on Tully Gorge Road, distant traffic activity on Bruce Highway, and localised insects and frogs. During the day period ambient noise levels were dominated by localised traffic activity on Tully Gorge Road.

Noise from the nearest transformer was clearly audible during night hours, when ambient noise levels were lower, and was characterised by typical transformer hum.

Noise from the transformer was marginally audible during the day due to elevated ambient noise levels.

Noise generated by the transformer is continuous and steady state and is not characterised by transient events. On this basis it is reasonable to determine that the L_{Aeq} ambient noise level fluctuations are driven by noise sources other than the transformer, specifically the distant and localised noise sources previously described.

Consideration of the measured L_{A90} is therefore appropriate given the ability of the L_{A90} metric to reduce the influence of transient extraneous noise events, and the steady state nature of the transformer noise sources.

Measured L_{A901 min} noise levels have been reviewed across the night-period of the noise logging survey, being the time of day when extraneous noise sources are likely to be reduced. Even with this approach the measured L_{A90} is likely to include a proportion of transformer noise and noise from other background noise sources. The review therefore concentrated on periods at which the L_{Aeq} and L_{A90} were concurrently low in level, indicating reduced extraneous noise.

Recordings conducted at approximately 01:32 indicated measured levels of 37 dB Lago 1 min and 38 dB Lago 1 min.

Review of the audio recording at this time indicated transformer noise to be the dominant noise source with limited extraneous noise that may influence the L_{A90} i.e. distant traffic, or localised frog or insect noise. This is reflected in the concurrent close L_{A90} and L_{Aeq} noise levels.

Attended measurements – Intermediate locations

Attended measurements were conducted directly at location A and 3 other intermediate locations close to the northern substation. These were the closest feasible positions to the transformers in the substations.

Measurements at the intermediate locations were generally conducted at night, allowing for lower ambient and background noise levels and times when noise from the transformers was expected to be more dominant of the total noise environment at the measurement position.

The logging data and attended intermediate measurements have generally been used for estimating noise levels for the existing substation and transformers.

Table 5 provides measured L_{Aeq} and L_{Aeq} noise levels at the respective locations, alongside site notes from the attending consultant. Estimates of transformer noise levels at the subject measurement position are provided, where feasible.

Table 5: Attended measurement summary – Intermediate locations

Location	Time	Duration [mm:ss]	L _{Aeq}	L _{A90}	Notes
A	23:40	10:00	40	37	Logger location, approximately 35 m from nearest transformer (north transformer in northern substation). Transformer hum clearly audible and measurable.
					Total noise around 36-37 dB L_{AF} during periods of low ambient noise, including transformers and insects/frogs.
					Transformer noise estimated to be 1-2 dB below, based on consultant judgement of comparative levels i.e. around 34-36 dB. Noise primarily from a single transformer.
В	23:58	10:05	38	36	Northwest corner of northern substation. Transformer noise just audible. Transformer noise judged to be associated with south transformer in northern substation. Northern transformer in north substation partially blocked by containers in site.
					Total noise around 35-37 dB L_{AF} during periods of low ambient noise.
					Transformer noise estimated approximately 3-4 dB below that, i.e. around 31-34 dB. Likely from 2 transformers.
С	00:15	08:56	39	37	West boundary of northern substation, approximately 85 m away from nearest transformer. Transformer noise generally just audible primarily associated with south transformer in northern substation with shielding of north substation transformers.
					Extraneous noise from frogs and insects.
					Total noise around 36-37 dB $\ensuremath{L_{AF}}$ during periods of low ambient noise .
					Transformer noise estimated approximately 1-3 dB below that, i.e. around 33-36 dB. Likely from 2 transformers.

Attended measurements – Receptor locations

Attended hand-held measurements were conducted by the attending consultant at locations representing nearby residential receptors, using a sound level meter.

Measurements during the night period were not feasible due to significant noise from barking dogs, triggered by the attending consultant's presence. Measurements were therefore conducted during the day period.

Table 6 provides measured L_{Aeq} and L_{Aeq} noise levels at the respective locations, alongside site notes from the attending consultant. Estimates of transformer noise levels at the subject measurement position are provided, where feasible.

Table 6: Attended measurement summary – Receptor locations

Location	Time	Duration [mm:ss]	L _{Aeq}	L _{A90}	Notes
441-Res-	10:14	10:00	44	40	Transformer noise ranging from inaudible to just audible. Ambient noise levels dominated by occasional local traffic, distant traffic noise (likely from the highway) and bird noise.
					Transformer noise just audible in total noise level of 42 dB L_{AF} .
					Transformer noise inaudible in total noise level of 44 dB $\ensuremath{\text{L}_{\text{AF}}}.$
					Transformer noise therefore estimated to be 30-32 dB.
54-Res-	11:47	05:02	48	43	Line of sight to north transformer in northern substation.
					Southern transformer in northern substation visible but inaudible in ambient noise levels of 41 dB $\ensuremath{L_{AF}}$.
					Transformer noise therefore estimated to be 30 dB, or less.
74-Res-	11:36	05:15	46	42	Line of sight to north transformer in northern substation.
					Southern transformer in northern substation visible but inaudible in ambient noise levels of 41-43 dB $L_{AF.}$
					Transformer noise therefore estimated to be 30 dB, or less.
31-Res-	11:26	05:01	44	40	Transformer generally inaudible during lowest lulls in ambient noise, around 38-40 dB L_{AF} .
					Transformer noise therefore estimated to be 28-30 dB, or less.

VALIDATION OF ASSUMED TRANSFORMER SOUND POWER LEVELS

Sound power levels for transformers in the existing substations have previously been estimated in Rp 001 2024114, based on derivation from provided MVA ratings, in accordance with the calculation method set out in AS 60076:10.

The 'reduced maximum' sound power level calculation was adopted, as the 'standard maximum' noise level set out by the standard tends to be overly conservative.

Spectral data for the transformers was estimated by applying Bies & Hansen corrections to the derived overall sound power levels.⁶

The previously derived transformer sound power levels are given in Table 7.

Table 7: Assumed transformer sound power level, per unit, dB Lw

Item	Octave band centre frequency, Hz							
	63	125	250	500	1,000	2,000	4,000	Α
Northern substation: 20 MVA transformer	79	81	76	76	70	65	60	76
Southern substation: 250 MVA transformer	95	97	92	92	86	81	76	92

Definitive sound power levels for the existing transformers would need to be determined by conducting near-field noise measurements within the substation sites following the detailed method set out by AS 60076:10. This would require access to locations within 10 m or less of each transformer and comprises an exhaustive engineering method that is excessively detailed for the purpose of this survey.

The measurements conducted at the intermediate locations can however be used to derive approximate overall sound power levels for the transformers, to validate and verify the previously derived assumed sound power levels.

In particular the derived 37 dB L_{A90} sound pressure level extracted from the noise logging data appears to provide robust isolation of dominant transformer noise contributions and minimal extraneous noise influence. Based on the conservative assumption that the total noise energy can be attributed to the single nearest transformer (being the northern transformer in the north substation) an overall sound power level of 76 dB L_{WA} is derived. This is consistent with the assumed sound power level set out in Table 7.

Alternative derivations of transformer sound power level taking into account the indicated transformer sound pressure levels at intermediate locations set out in Table 5 are generally consistent with 76 dB L_{WA} with limited (1 dB) variance.

The noise logging and attended measurements therefore confirm that the assumed sound power levels for the northern substation transformers are reasonable and valid.

Validations of transformer noise associated with the southern substation as less readily feasible, due to limited access to locations close to the transformer. However, predictions at receivers adopting the assumed sound power level detailed in Table 7 result in sound pressure levels at receptors consistent with the commentary summarised in Table 6. On this basis the assumed sound power levels for the southern

⁶ Bies, & Hansen, C. H. (2009). Engineering noise control: theory and practice (Fourth edition.). p. 601

substation transformer are expected to be reasonable and valid, and consistent with the surveyed environmental noise environment.

UPDATED CUMULATIVE ASSESSMENT

The assumed sound power levels for transformers adopted in Rp 001 20241144 have been verified based on the site survey carried out at the existing Tully substations and surrounding area.

This confirms that the adoption of the 'reduced maximum' is appropriate and indicated to be representative of real world existing transformer noise levels.

Section 7.2.1 of Rp 001 20241144 provides a range of indicated cumulative noise levels based on whether the 'reduced maximum' or 'standard maximum' is applicable. Given confirmation of the 'reduced maximum', the reported cumulative noise levels can be simplified.

The updated cumulative noise predictions are set out in Table 8 and Table 9 for the layout, equipment selections and operational fan duties as described in Rp 001 20241144.

Table 8: Predicted cumulative noise levels, day/evening period, dB LAeq,adj,15min

Sensitive receptor	Project ^a	Substations ^a	Cumulative	Acoustic quality objective	Compliance?
31-Res-	35	31	36	42	✓
38-Res-	34	29	35	42	\checkmark
54-Res-	35	33	37	42	\checkmark
74-Res-	35	31	36	42	\checkmark
441-Res-	37	33	38	42	\checkmark

a Includes +3 dB tonality adjustment

Table 9: Predicted cumulative noise levels, night period, dB LAeq,adj,15min

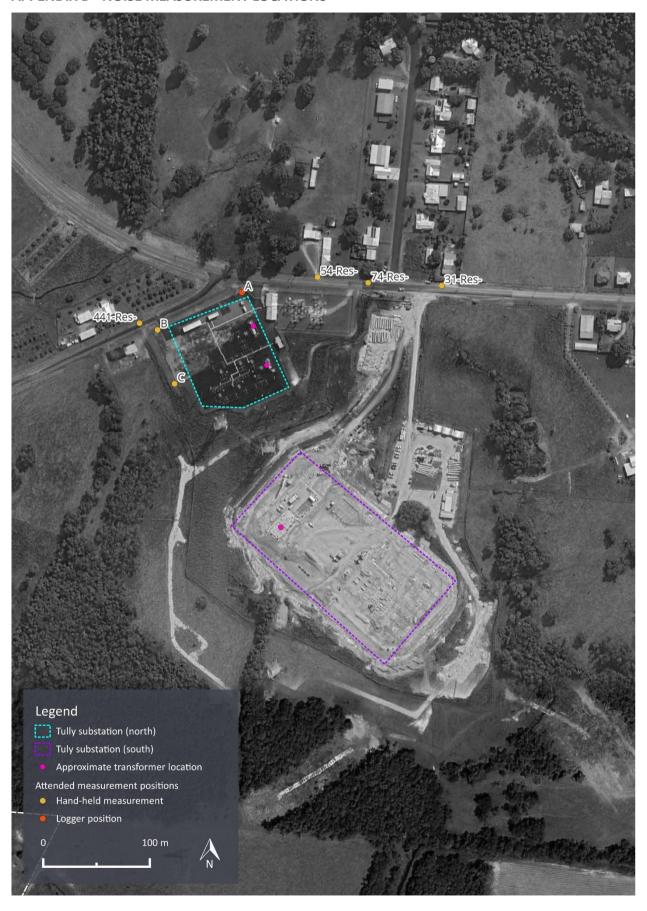
Sensitive receptor	Project ^a	Substations ^a	Cumulative	Acoustic quality objective	Compliance?
31-Res-	29	31	33	37	✓
38-Res-	29	29	32	37	✓
54-Res-	30	33	35	37	✓
74-Res-	29	31	33	37	✓
441-Res-	31	33	35	37	\checkmark

a Includes +3 dB tonality adjustment

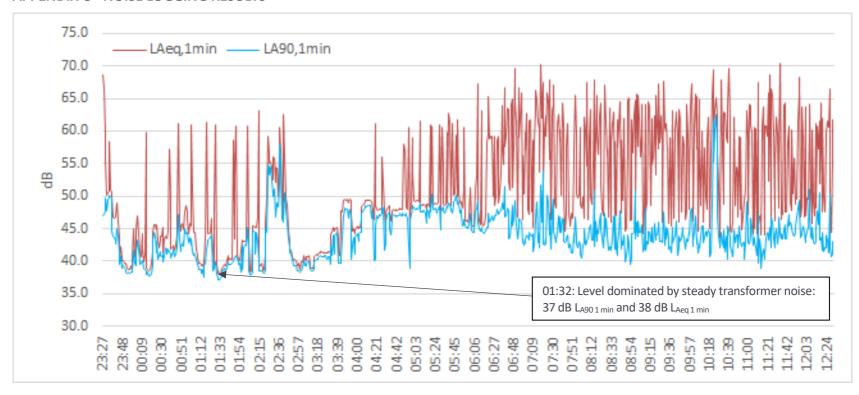
The revised assessment indicates that the risk for cumulative noise from the Project and Tully substations exceeding the acoustic quality objectives is limited. Predicted cumulative noise levels are indicated to be below the EPP 2019 acoustic quality objectives at all receptors for both day/evening, night periods.

The application of a 3 dB tonality adjustment for substation noise is expected to be conservative with tonality not indicated to be a prominent feature of the noise environment at the receptors, albeit based on daytime observations.

Notwithstanding the above, cumulative noise risks should be considered as the Project moves through subsequent stages of development.



APPENDIX A SITE PLAN



APPENDIX B NOISE MEASUREMENT LOCATIONS

APPENDIX C NOISE LOGGING RESULTS

